基于RC模型的KVLCC2船六自由度运动机器学习预测

IF 13 1区 工程技术 Q1 ENGINEERING, MARINE Journal of Ocean Engineering and Science Pub Date : 2025-02-01 DOI:10.1016/j.joes.2022.08.004
Ling Liu , Yu Yang , Tao Peng
{"title":"基于RC模型的KVLCC2船六自由度运动机器学习预测","authors":"Ling Liu ,&nbsp;Yu Yang ,&nbsp;Tao Peng","doi":"10.1016/j.joes.2022.08.004","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses a machine learning technique based on the Reservoir Computing (RC) model to predict the surge, sway, heave, roll, pitch, and yaw (6-DOF) motions of the KVLCC2 ship in an irregular wave environment. The trained RC model can predict the 6-DOF motions and give the predicted length of 2–5 wave cycles ahead with good accuracy. This work shows the strong ability of machine learning to predict vessel wave-excited motions. It implies that machine learning has important guiding significance in real-time forecasting for motions of both manned and unmanned ships.</div></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"10 1","pages":"Pages 22-28"},"PeriodicalIF":13.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning prediction of 6-DOF motions of KVLCC2 ship based on RC model\",\"authors\":\"Ling Liu ,&nbsp;Yu Yang ,&nbsp;Tao Peng\",\"doi\":\"10.1016/j.joes.2022.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study uses a machine learning technique based on the Reservoir Computing (RC) model to predict the surge, sway, heave, roll, pitch, and yaw (6-DOF) motions of the KVLCC2 ship in an irregular wave environment. The trained RC model can predict the 6-DOF motions and give the predicted length of 2–5 wave cycles ahead with good accuracy. This work shows the strong ability of machine learning to predict vessel wave-excited motions. It implies that machine learning has important guiding significance in real-time forecasting for motions of both manned and unmanned ships.</div></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"10 1\",\"pages\":\"Pages 22-28\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013322002364\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322002364","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning prediction of 6-DOF motions of KVLCC2 ship based on RC model
This study uses a machine learning technique based on the Reservoir Computing (RC) model to predict the surge, sway, heave, roll, pitch, and yaw (6-DOF) motions of the KVLCC2 ship in an irregular wave environment. The trained RC model can predict the 6-DOF motions and give the predicted length of 2–5 wave cycles ahead with good accuracy. This work shows the strong ability of machine learning to predict vessel wave-excited motions. It implies that machine learning has important guiding significance in real-time forecasting for motions of both manned and unmanned ships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
19.70%
发文量
224
审稿时长
29 days
期刊介绍: The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science. JOES encourages the submission of papers covering various aspects of ocean engineering and science.
期刊最新文献
An experimental study on the moisture migration characteristics of liquefiable iron ore Double ceramic sphere's sympathetic implosions triggered by local impacts Coupled aero-hydro-servo-elastic analysis of 10MW TLB floating offshore wind turbine Geometric and non-geometric impact on Coanda effect propulsion device for UUV application A spectral coupled boundary element method for the simulation of nonlinear surface gravity waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1