{"title":"MOF:AC混合微吸附剂对模型油中二苯并噻吩吸附脱硫过程的优化","authors":"Y. Salih","doi":"10.1080/17415993.2023.2241594","DOIUrl":null,"url":null,"abstract":"Elimination of the release of hazardous sulfur compounds into the environment is imperative, and achieving this requires the desulfurization of petroleum products using an effective method. Adsorption desulfurization is gaining as a cost-effective alternative to various other techniques. In this study, cobalt-based metal-organic framework (Co-MOF) and Hybrid MOF: AC adsorbers were prepared using various ratios through the solvothermal method. The objective was to determine the optimal ratio for maximum removal of dibenzothiophene in a model oil through batch process adsorption. The adsorbers were characterized using FTIR, XRD, FESEM-EDS, and N2 adsorption-desorption analysis. The results indicated that a ratio of 1:5 MOF: AC achieved a 98% removal (147.57 mg/g) of DBT among (MOF, AC, 1:1 MOF: AC, 1:2 MOF: AC, and 1:10 MOF: AC) due to its optimal number of active sites and surface area. Furthermore, the optimal conditions for maximum DBT adsorption were a dosage of 0.1 g and a contact time of 2 h. The kinetic study of the adsorber showed conformity with a pseudo-first-order model. GRAPHICAL ABSTRACT","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimization of the adsorption desulfurization process for dibenzothiophene in a model oil using different ratios of hybrid MOF: AC micro adsorbers\",\"authors\":\"Y. Salih\",\"doi\":\"10.1080/17415993.2023.2241594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elimination of the release of hazardous sulfur compounds into the environment is imperative, and achieving this requires the desulfurization of petroleum products using an effective method. Adsorption desulfurization is gaining as a cost-effective alternative to various other techniques. In this study, cobalt-based metal-organic framework (Co-MOF) and Hybrid MOF: AC adsorbers were prepared using various ratios through the solvothermal method. The objective was to determine the optimal ratio for maximum removal of dibenzothiophene in a model oil through batch process adsorption. The adsorbers were characterized using FTIR, XRD, FESEM-EDS, and N2 adsorption-desorption analysis. The results indicated that a ratio of 1:5 MOF: AC achieved a 98% removal (147.57 mg/g) of DBT among (MOF, AC, 1:1 MOF: AC, 1:2 MOF: AC, and 1:10 MOF: AC) due to its optimal number of active sites and surface area. Furthermore, the optimal conditions for maximum DBT adsorption were a dosage of 0.1 g and a contact time of 2 h. The kinetic study of the adsorber showed conformity with a pseudo-first-order model. GRAPHICAL ABSTRACT\",\"PeriodicalId\":17081,\"journal\":{\"name\":\"Journal of Sulfur Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sulfur Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/17415993.2023.2241594\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17415993.2023.2241594","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The optimization of the adsorption desulfurization process for dibenzothiophene in a model oil using different ratios of hybrid MOF: AC micro adsorbers
Elimination of the release of hazardous sulfur compounds into the environment is imperative, and achieving this requires the desulfurization of petroleum products using an effective method. Adsorption desulfurization is gaining as a cost-effective alternative to various other techniques. In this study, cobalt-based metal-organic framework (Co-MOF) and Hybrid MOF: AC adsorbers were prepared using various ratios through the solvothermal method. The objective was to determine the optimal ratio for maximum removal of dibenzothiophene in a model oil through batch process adsorption. The adsorbers were characterized using FTIR, XRD, FESEM-EDS, and N2 adsorption-desorption analysis. The results indicated that a ratio of 1:5 MOF: AC achieved a 98% removal (147.57 mg/g) of DBT among (MOF, AC, 1:1 MOF: AC, 1:2 MOF: AC, and 1:10 MOF: AC) due to its optimal number of active sites and surface area. Furthermore, the optimal conditions for maximum DBT adsorption were a dosage of 0.1 g and a contact time of 2 h. The kinetic study of the adsorber showed conformity with a pseudo-first-order model. GRAPHICAL ABSTRACT
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.