Yangyang Li;Chaoqun Fei;Chuanqing Wang;Hongming Shan;Ruqian Lu
{"title":"基于几何流的深度黎曼度量学习","authors":"Yangyang Li;Chaoqun Fei;Chuanqing Wang;Hongming Shan;Ruqian Lu","doi":"10.1109/JAS.2023.123399","DOIUrl":null,"url":null,"abstract":"Deep metric learning (DML) has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks. Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance. However, these methods fail to preserve the geometric structure of data in the embedding space, which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning. To alleviate these issues, by assuming that the input data is embedded in a lower-dimensional sub-manifold, we propose a novel deep Riemannian metric learning (DRML) framework that exploits the non-Euclidean geometric structural information. Considering that the curvature information of data measures how much the Riemannian (non-Euclidean) metric deviates from the Euclidean metric, we leverage geometry flow, which is called a geometric evolution equation, to characterize the relation between the Riemannian metric and its curvature. Our DRML not only regularizes the local neigh-borhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data. On several benchmark datasets, the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"10 9","pages":"1882-1892"},"PeriodicalIF":15.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry Flow-Based Deep Riemannian Metric Learning\",\"authors\":\"Yangyang Li;Chaoqun Fei;Chuanqing Wang;Hongming Shan;Ruqian Lu\",\"doi\":\"10.1109/JAS.2023.123399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep metric learning (DML) has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks. Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance. However, these methods fail to preserve the geometric structure of data in the embedding space, which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning. To alleviate these issues, by assuming that the input data is embedded in a lower-dimensional sub-manifold, we propose a novel deep Riemannian metric learning (DRML) framework that exploits the non-Euclidean geometric structural information. Considering that the curvature information of data measures how much the Riemannian (non-Euclidean) metric deviates from the Euclidean metric, we leverage geometry flow, which is called a geometric evolution equation, to characterize the relation between the Riemannian metric and its curvature. Our DRML not only regularizes the local neigh-borhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data. On several benchmark datasets, the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"10 9\",\"pages\":\"1882-1892\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10219076/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10219076/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Geometry Flow-Based Deep Riemannian Metric Learning
Deep metric learning (DML) has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks. Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance. However, these methods fail to preserve the geometric structure of data in the embedding space, which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning. To alleviate these issues, by assuming that the input data is embedded in a lower-dimensional sub-manifold, we propose a novel deep Riemannian metric learning (DRML) framework that exploits the non-Euclidean geometric structural information. Considering that the curvature information of data measures how much the Riemannian (non-Euclidean) metric deviates from the Euclidean metric, we leverage geometry flow, which is called a geometric evolution equation, to characterize the relation between the Riemannian metric and its curvature. Our DRML not only regularizes the local neigh-borhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data. On several benchmark datasets, the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.