Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, K. Sharif, Haibo Hu, Yuan-zhang Li
{"title":"基于Logits分布的深度学习模型成员推断攻击","authors":"Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, K. Sharif, Haibo Hu, Yuan-zhang Li","doi":"10.1109/TDSC.2022.3222880","DOIUrl":null,"url":null,"abstract":"Deep Learning(DL) techniques have gained significant importance in the recent past due to their vast applications. However, DL is still prone to several attacks, such as the Membership Inference Attack (MIA), based on the memorability of training data. MIA aims at determining the presence of specific data in the training dataset of the model with substitute model of similar structure to the objective model. As MIA relies on the substitute model, they can be mitigated if the substitute model is not clear about the network structure of the objective model. To solve the challenge of shadow-model construction, this work presents L-Leaks, a member inference attack based on Logits. L-Leaks allow an adversary to use the substitute model's information to predict the presence of membership if the shadow and objective model are similar enough. Here, the substitute model is built by learning the logits of the objective model, hence making it similar enough. This results in the substitute model having sufficient confidence in the member samples of the objective model. The evaluation of the attack's success shows that the proposed technique can execute the attack more accurately than existing techniques. It also shows that the proposed MIA is significantly robust under different network models and datasets.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"3799-3808"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Membership Inference Attacks Against Deep Learning Models via Logits Distribution\",\"authors\":\"Hongyang Yan, Shuhao Li, Yajie Wang, Yaoyuan Zhang, K. Sharif, Haibo Hu, Yuan-zhang Li\",\"doi\":\"10.1109/TDSC.2022.3222880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning(DL) techniques have gained significant importance in the recent past due to their vast applications. However, DL is still prone to several attacks, such as the Membership Inference Attack (MIA), based on the memorability of training data. MIA aims at determining the presence of specific data in the training dataset of the model with substitute model of similar structure to the objective model. As MIA relies on the substitute model, they can be mitigated if the substitute model is not clear about the network structure of the objective model. To solve the challenge of shadow-model construction, this work presents L-Leaks, a member inference attack based on Logits. L-Leaks allow an adversary to use the substitute model's information to predict the presence of membership if the shadow and objective model are similar enough. Here, the substitute model is built by learning the logits of the objective model, hence making it similar enough. This results in the substitute model having sufficient confidence in the member samples of the objective model. The evaluation of the attack's success shows that the proposed technique can execute the attack more accurately than existing techniques. It also shows that the proposed MIA is significantly robust under different network models and datasets.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"3799-3808\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3222880\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3222880","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Membership Inference Attacks Against Deep Learning Models via Logits Distribution
Deep Learning(DL) techniques have gained significant importance in the recent past due to their vast applications. However, DL is still prone to several attacks, such as the Membership Inference Attack (MIA), based on the memorability of training data. MIA aims at determining the presence of specific data in the training dataset of the model with substitute model of similar structure to the objective model. As MIA relies on the substitute model, they can be mitigated if the substitute model is not clear about the network structure of the objective model. To solve the challenge of shadow-model construction, this work presents L-Leaks, a member inference attack based on Logits. L-Leaks allow an adversary to use the substitute model's information to predict the presence of membership if the shadow and objective model are similar enough. Here, the substitute model is built by learning the logits of the objective model, hence making it similar enough. This results in the substitute model having sufficient confidence in the member samples of the objective model. The evaluation of the attack's success shows that the proposed technique can execute the attack more accurately than existing techniques. It also shows that the proposed MIA is significantly robust under different network models and datasets.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.