A. Subramanyam Reddy, S. Rajamani, Ali J. Chamkha, Sunitha C. Srinivas, K. Jagadeshkumar
{"title":"具有Cattaneo–Christov热通量、熵产生和随时间变化的压力梯度的两个垂直多孔壁之间的非牛顿铁纳米流体的MHD流动","authors":"A. Subramanyam Reddy, S. Rajamani, Ali J. Chamkha, Sunitha C. Srinivas, K. Jagadeshkumar","doi":"10.15388/namc.2023.28.32127","DOIUrl":null,"url":null,"abstract":"This article studies the magnetohydrodynamic flow of non-Newtonian ferro nanofluid subject to time-dependent pressure gradient between two vertical permeable walls with Cattaneo–Christov heat flux and entropy generation. In this study, blood is considered as non-Newtonian fluid (couple stress fluid). Nanoparticles’ shape factor, Joule heating, viscous dissipation, and radiative heat impacts are examined. This investigation is crucial in nanodrug delivery, pharmaceutical processes, microelectronics, biomedicines, and dynamics of physiological fluids. The flow governing partial differential equations are transformed into the system of ordinary differential equations by deploying the perturbation process and then handled with Runge–Kutta 4th-order procedure aided by the shooting approach. Hamilton–Crosser model is employed to analyze the thermal conductivity of different shapes of nanoparticles. The obtained results reveal that intensifying Eckert number leads to a higher temperature, while the reverse is true for increased thermal relaxation parameter. Heat transfer rate escalates for increasing thermal radiation. Entropy dwindles for intensifying thermal relaxation parameter.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHD flow of non-Newtonian ferro nanofluid between two vertical porous walls with Cattaneo–Christov heat flux, entropy generation, and time-dependent pressure gradient\",\"authors\":\"A. Subramanyam Reddy, S. Rajamani, Ali J. Chamkha, Sunitha C. Srinivas, K. Jagadeshkumar\",\"doi\":\"10.15388/namc.2023.28.32127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies the magnetohydrodynamic flow of non-Newtonian ferro nanofluid subject to time-dependent pressure gradient between two vertical permeable walls with Cattaneo–Christov heat flux and entropy generation. In this study, blood is considered as non-Newtonian fluid (couple stress fluid). Nanoparticles’ shape factor, Joule heating, viscous dissipation, and radiative heat impacts are examined. This investigation is crucial in nanodrug delivery, pharmaceutical processes, microelectronics, biomedicines, and dynamics of physiological fluids. The flow governing partial differential equations are transformed into the system of ordinary differential equations by deploying the perturbation process and then handled with Runge–Kutta 4th-order procedure aided by the shooting approach. Hamilton–Crosser model is employed to analyze the thermal conductivity of different shapes of nanoparticles. The obtained results reveal that intensifying Eckert number leads to a higher temperature, while the reverse is true for increased thermal relaxation parameter. Heat transfer rate escalates for increasing thermal radiation. Entropy dwindles for intensifying thermal relaxation parameter.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.32127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
MHD flow of non-Newtonian ferro nanofluid between two vertical porous walls with Cattaneo–Christov heat flux, entropy generation, and time-dependent pressure gradient
This article studies the magnetohydrodynamic flow of non-Newtonian ferro nanofluid subject to time-dependent pressure gradient between two vertical permeable walls with Cattaneo–Christov heat flux and entropy generation. In this study, blood is considered as non-Newtonian fluid (couple stress fluid). Nanoparticles’ shape factor, Joule heating, viscous dissipation, and radiative heat impacts are examined. This investigation is crucial in nanodrug delivery, pharmaceutical processes, microelectronics, biomedicines, and dynamics of physiological fluids. The flow governing partial differential equations are transformed into the system of ordinary differential equations by deploying the perturbation process and then handled with Runge–Kutta 4th-order procedure aided by the shooting approach. Hamilton–Crosser model is employed to analyze the thermal conductivity of different shapes of nanoparticles. The obtained results reveal that intensifying Eckert number leads to a higher temperature, while the reverse is true for increased thermal relaxation parameter. Heat transfer rate escalates for increasing thermal radiation. Entropy dwindles for intensifying thermal relaxation parameter.