一种用于复合材料无损分析的便携式快中子射线照相系统

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR Nukleonika Pub Date : 2019-09-01 DOI:10.2478/nuka-2019-0012
E. Kam, I. Reyhancan, R. Biyik
{"title":"一种用于复合材料无损分析的便携式快中子射线照相系统","authors":"E. Kam, I. Reyhancan, R. Biyik","doi":"10.2478/nuka-2019-0012","DOIUrl":null,"url":null,"abstract":"Abstract Depending on the neutron energy used, neutron radiography can be generally categorized as fast and thermal neutron radiography. Fast neutron radiography (FNR) with neutron energy more than 1 MeV opens up a new range of possibilities for a non-destructive examination when the inspected object is thick or dense. Other traditional techniques, such as X-ray, gamma ray and thermal neutron radiography, do not meet penetration capabilities of FNR in this area. Because of these distinctive features, this technique is used in different industrial applications such as security (cargo investigation for contraband such as narcotics, explosives and illicit drugs), gas/liquid flow and mixing and radiography and tomography of encapsulated heavy shielded low Z compound materials. The FNR images are produced directly during exposure as neutrons create recoil protons, which activate a scintillator screen, allowing images to be collected with a computer-controlled charge-coupled device camera. Finally, the picture can be saved on a computer for image processing. The aim of this research was to set up a portable FN R system and to test it for use in non-destructive testing of different composite materials. Experiments were carried out by using a fast portative neutron generator Thermo Scientific MP 320.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"64 1","pages":"101 - 97"},"PeriodicalIF":0.7000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A portable fast neutron radiography system for non-destructive analysis of composite materials\",\"authors\":\"E. Kam, I. Reyhancan, R. Biyik\",\"doi\":\"10.2478/nuka-2019-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Depending on the neutron energy used, neutron radiography can be generally categorized as fast and thermal neutron radiography. Fast neutron radiography (FNR) with neutron energy more than 1 MeV opens up a new range of possibilities for a non-destructive examination when the inspected object is thick or dense. Other traditional techniques, such as X-ray, gamma ray and thermal neutron radiography, do not meet penetration capabilities of FNR in this area. Because of these distinctive features, this technique is used in different industrial applications such as security (cargo investigation for contraband such as narcotics, explosives and illicit drugs), gas/liquid flow and mixing and radiography and tomography of encapsulated heavy shielded low Z compound materials. The FNR images are produced directly during exposure as neutrons create recoil protons, which activate a scintillator screen, allowing images to be collected with a computer-controlled charge-coupled device camera. Finally, the picture can be saved on a computer for image processing. The aim of this research was to set up a portable FN R system and to test it for use in non-destructive testing of different composite materials. Experiments were carried out by using a fast portative neutron generator Thermo Scientific MP 320.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"64 1\",\"pages\":\"101 - 97\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2019-0012\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2019-0012","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 4

摘要

根据所用中子能量的不同,中子射线照相大体可分为快中子射线照相和热中子射线照相。中子能量大于1兆电子伏特的快中子射线照相(FNR)为被测物体较厚或致密时的无损检测开辟了新的可能性范围。其他传统技术,如x射线、伽马射线和热中子射线照相,都不能满足FNR在这一领域的穿透能力。由于这些独特的特点,该技术被用于不同的工业应用,如安全(违禁品,如毒品,爆炸物和非法药物的货物调查),气体/液体流动和混合以及封装重屏蔽低Z化合物材料的射线照相和断层扫描。FNR图像是在曝光过程中直接产生的,中子产生反冲质子,激活闪烁体屏幕,允许图像被计算机控制的电荷耦合器件相机收集。最后将图像保存在计算机上进行图像处理。本研究的目的是建立一个便携式FN R系统,并对其在不同复合材料无损检测中的应用进行测试。实验采用Thermo Scientific mp320快中子发生器进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A portable fast neutron radiography system for non-destructive analysis of composite materials
Abstract Depending on the neutron energy used, neutron radiography can be generally categorized as fast and thermal neutron radiography. Fast neutron radiography (FNR) with neutron energy more than 1 MeV opens up a new range of possibilities for a non-destructive examination when the inspected object is thick or dense. Other traditional techniques, such as X-ray, gamma ray and thermal neutron radiography, do not meet penetration capabilities of FNR in this area. Because of these distinctive features, this technique is used in different industrial applications such as security (cargo investigation for contraband such as narcotics, explosives and illicit drugs), gas/liquid flow and mixing and radiography and tomography of encapsulated heavy shielded low Z compound materials. The FNR images are produced directly during exposure as neutrons create recoil protons, which activate a scintillator screen, allowing images to be collected with a computer-controlled charge-coupled device camera. Finally, the picture can be saved on a computer for image processing. The aim of this research was to set up a portable FN R system and to test it for use in non-destructive testing of different composite materials. Experiments were carried out by using a fast portative neutron generator Thermo Scientific MP 320.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
期刊最新文献
Numerical studies of plasma edge in W7-X with 3D FINDIF code Photomultiplier tube signal conditioning for high-temperature applications Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation Mechanical design of the gamma blockers for the high-energy beam transport region of the European Spallation Source Radon exposure in kindergartens in one Bulgarian district
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1