M. Cunningham, L. Tuck, C. Samson, J. Laliberté, M. Goldie, Alan Wood, David Birkett
{"title":"基于混合递归神经网络的无高空定标无人飞行器系统航磁姿态补偿","authors":"M. Cunningham, L. Tuck, C. Samson, J. Laliberté, M. Goldie, Alan Wood, David Birkett","doi":"10.1190/tle42020112.1","DOIUrl":null,"url":null,"abstract":"Since the 1950s, Tolles-Lawson-based aeromagnetic compensation methods have been used to separate an aircraft's magnetic signal from signal associated with ground geologic and cultural features. This is done by performing a high-altitude figure-of-merit (FOM) flight and fitting the band-pass-filtered magnetic data to determine compensation parameters. This paper describes a supervised hybrid recurrent neural network (HRNN) algorithm trained on low-altitude survey data to perform aeromagnetic compensation. The proposed HRNN attitude compensation method can be employed for aeromagnetic surveys where traditional FOM and compensation are not possible. It has particular relevance for surveying via uninhabited aircraft systems (UAS). Firstly, the HRNN was tested on data from a fixed-wing airplane survey, and the results were compared to hardware-based compensation results. The standard deviation of the difference between the two methods for magnetic attitude correction (MAC) was 0.1 nT for the training region and 0.4 nT for the application region, respectively. Secondly, a UAS FOM flight at the highest permitted altitude in Canada, 120 m above ground level, showed similar improvement ratios for software-based least squares (LS) and the proposed HRNN algorithm of 3.5 and 2.6, respectively. The percent change and deviation in differences in MACs from LS to HRNN was 0.0% and 0.9 nT across small-box loops and –2.7% and 0.4 nT across large-box loops. Finally, LS and the proposed HRNN algorithm were applied to a 50 m altitude UAS data set for which no FOM flight was possible. LS did not successfully model aircraft noise, whereas the HRNN demonstrated effective removal of the magnetic signal due to aircraft attitude variations. The modeled HRNN MAC had a standard deviation of 2.4 nT.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeromagnetic attitude compensation for uninhabited aircraft systems without high-altitude calibration patterns using hybrid recurrent neural networks\",\"authors\":\"M. Cunningham, L. Tuck, C. Samson, J. Laliberté, M. Goldie, Alan Wood, David Birkett\",\"doi\":\"10.1190/tle42020112.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the 1950s, Tolles-Lawson-based aeromagnetic compensation methods have been used to separate an aircraft's magnetic signal from signal associated with ground geologic and cultural features. This is done by performing a high-altitude figure-of-merit (FOM) flight and fitting the band-pass-filtered magnetic data to determine compensation parameters. This paper describes a supervised hybrid recurrent neural network (HRNN) algorithm trained on low-altitude survey data to perform aeromagnetic compensation. The proposed HRNN attitude compensation method can be employed for aeromagnetic surveys where traditional FOM and compensation are not possible. It has particular relevance for surveying via uninhabited aircraft systems (UAS). Firstly, the HRNN was tested on data from a fixed-wing airplane survey, and the results were compared to hardware-based compensation results. The standard deviation of the difference between the two methods for magnetic attitude correction (MAC) was 0.1 nT for the training region and 0.4 nT for the application region, respectively. Secondly, a UAS FOM flight at the highest permitted altitude in Canada, 120 m above ground level, showed similar improvement ratios for software-based least squares (LS) and the proposed HRNN algorithm of 3.5 and 2.6, respectively. The percent change and deviation in differences in MACs from LS to HRNN was 0.0% and 0.9 nT across small-box loops and –2.7% and 0.4 nT across large-box loops. Finally, LS and the proposed HRNN algorithm were applied to a 50 m altitude UAS data set for which no FOM flight was possible. LS did not successfully model aircraft noise, whereas the HRNN demonstrated effective removal of the magnetic signal due to aircraft attitude variations. The modeled HRNN MAC had a standard deviation of 2.4 nT.\",\"PeriodicalId\":35661,\"journal\":{\"name\":\"Leading Edge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leading Edge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/tle42020112.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42020112.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Aeromagnetic attitude compensation for uninhabited aircraft systems without high-altitude calibration patterns using hybrid recurrent neural networks
Since the 1950s, Tolles-Lawson-based aeromagnetic compensation methods have been used to separate an aircraft's magnetic signal from signal associated with ground geologic and cultural features. This is done by performing a high-altitude figure-of-merit (FOM) flight and fitting the band-pass-filtered magnetic data to determine compensation parameters. This paper describes a supervised hybrid recurrent neural network (HRNN) algorithm trained on low-altitude survey data to perform aeromagnetic compensation. The proposed HRNN attitude compensation method can be employed for aeromagnetic surveys where traditional FOM and compensation are not possible. It has particular relevance for surveying via uninhabited aircraft systems (UAS). Firstly, the HRNN was tested on data from a fixed-wing airplane survey, and the results were compared to hardware-based compensation results. The standard deviation of the difference between the two methods for magnetic attitude correction (MAC) was 0.1 nT for the training region and 0.4 nT for the application region, respectively. Secondly, a UAS FOM flight at the highest permitted altitude in Canada, 120 m above ground level, showed similar improvement ratios for software-based least squares (LS) and the proposed HRNN algorithm of 3.5 and 2.6, respectively. The percent change and deviation in differences in MACs from LS to HRNN was 0.0% and 0.9 nT across small-box loops and –2.7% and 0.4 nT across large-box loops. Finally, LS and the proposed HRNN algorithm were applied to a 50 m altitude UAS data set for which no FOM flight was possible. LS did not successfully model aircraft noise, whereas the HRNN demonstrated effective removal of the magnetic signal due to aircraft attitude variations. The modeled HRNN MAC had a standard deviation of 2.4 nT.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.