Nemanja Dobrota , Aleksandar Stevanovic , Nikola Mitrovic
{"title":"一种利用高分辨率信号和检测数据联合估计延迟和到达模式的新模型","authors":"Nemanja Dobrota , Aleksandar Stevanovic , Nikola Mitrovic","doi":"10.1080/23249935.2022.2047126","DOIUrl":null,"url":null,"abstract":"<div><p>Delay is one of the most important traffic signal performance measures. In coordinated networks, understanding the characteristics of vehicle arrivals is important for coordination purposes and to properly estimate delays. When observed on a cyclical basis in real-time, distinctive arrival patterns can lead to similar delays, which may go undetected by contemporary delay models. This study proposes a set of enhancements to the Incremental Queue Accumulation (IQA) delay model to overcome the limitations of current models. Additionally, this study proposes a hybrid signal performance measure that combines delay and arrival patterns to depict signal performance truthfully. The enhancements to IQA are realised through an algorithm for the identification of distinctive vehicle arrival groups based on high-resolution signal and detection data. The results demonstrate that the proposed model provides reliable delay estimates (MAPE score in range 4.3–11.2%) while reporting a number of traffic arrival characteristics that are not available from the benchmarked models.</p></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel model to jointly estimate delay and arrival patterns by using high-resolution signal and detection data\",\"authors\":\"Nemanja Dobrota , Aleksandar Stevanovic , Nikola Mitrovic\",\"doi\":\"10.1080/23249935.2022.2047126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Delay is one of the most important traffic signal performance measures. In coordinated networks, understanding the characteristics of vehicle arrivals is important for coordination purposes and to properly estimate delays. When observed on a cyclical basis in real-time, distinctive arrival patterns can lead to similar delays, which may go undetected by contemporary delay models. This study proposes a set of enhancements to the Incremental Queue Accumulation (IQA) delay model to overcome the limitations of current models. Additionally, this study proposes a hybrid signal performance measure that combines delay and arrival patterns to depict signal performance truthfully. The enhancements to IQA are realised through an algorithm for the identification of distinctive vehicle arrival groups based on high-resolution signal and detection data. The results demonstrate that the proposed model provides reliable delay estimates (MAPE score in range 4.3–11.2%) while reporting a number of traffic arrival characteristics that are not available from the benchmarked models.</p></div>\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2324993522006807\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993522006807","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
A novel model to jointly estimate delay and arrival patterns by using high-resolution signal and detection data
Delay is one of the most important traffic signal performance measures. In coordinated networks, understanding the characteristics of vehicle arrivals is important for coordination purposes and to properly estimate delays. When observed on a cyclical basis in real-time, distinctive arrival patterns can lead to similar delays, which may go undetected by contemporary delay models. This study proposes a set of enhancements to the Incremental Queue Accumulation (IQA) delay model to overcome the limitations of current models. Additionally, this study proposes a hybrid signal performance measure that combines delay and arrival patterns to depict signal performance truthfully. The enhancements to IQA are realised through an algorithm for the identification of distinctive vehicle arrival groups based on high-resolution signal and detection data. The results demonstrate that the proposed model provides reliable delay estimates (MAPE score in range 4.3–11.2%) while reporting a number of traffic arrival characteristics that are not available from the benchmarked models.
期刊介绍:
Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.