视觉搜索的排队模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-08-01 DOI:10.1016/j.jmp.2023.102766
Yiqi Li , Martin Schlather , Edgar Erdfelder
{"title":"视觉搜索的排队模型","authors":"Yiqi Li ,&nbsp;Martin Schlather ,&nbsp;Edgar Erdfelder","doi":"10.1016/j.jmp.2023.102766","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding how attentional resources are deployed in visual processing is a fundamental and highly debated topic. As an alternative to theoretical models of visual search that propose sequences of separate serial or parallel stages of processing, we suggest a queueing processing structure that entails a serial transition between parallel processing stages. We develop a continuous-time queueing model for standard visual search tasks to formalize and implement this notion. Specified as a finite-time, single-line, multiserver queueing system, the model accounts for both accuracy and response time (RT) data in visual search on a distributional level. It assumes two stages of processing. Visual stimuli first go through a massively parallel preattentive stage of feature encoding. They wait if necessary and then enter a limited-capacity attentive stage serially where multiple processing channels (“servers”) integrate features of several stimuli in parallel. A core feature of our model is the serial transition from the unlimited-capacity preattentive processing stage to the limited-capacity attentive processing stage. It enables asynchronous attentive processing of multiple stimuli in parallel and is more efficient than a simple chain of two successive, strictly parallel processing stages. The model accounts for response errors by means of two underlying mechanisms, namely, imperfect processing of the servers and, in addition, incomplete search adopted by the observer to maximize search efficiency under an accuracy constraint. For statistical inference, we develop a Monte-Carlo-based parameter estimation procedure, using maximum likelihood (ML) estimation for accuracy-related parameters and minimum distance (MD) estimation for RT-related parameters. We fit the model to two large empirical data sets from two types of visual search tasks. The model captures the accuracy rates almost perfectly and the observed RT distributions quite well, indicating a high explanatory power. The number of independent parallel processing channels that explain both data sets best was five. We also perform a Monte-Carlo model uncertainty analysis and show that the model with the correct number of parallel channels is selected for more than 90% of the simulated samples.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A queueing model of visual search\",\"authors\":\"Yiqi Li ,&nbsp;Martin Schlather ,&nbsp;Edgar Erdfelder\",\"doi\":\"10.1016/j.jmp.2023.102766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding how attentional resources are deployed in visual processing is a fundamental and highly debated topic. As an alternative to theoretical models of visual search that propose sequences of separate serial or parallel stages of processing, we suggest a queueing processing structure that entails a serial transition between parallel processing stages. We develop a continuous-time queueing model for standard visual search tasks to formalize and implement this notion. Specified as a finite-time, single-line, multiserver queueing system, the model accounts for both accuracy and response time (RT) data in visual search on a distributional level. It assumes two stages of processing. Visual stimuli first go through a massively parallel preattentive stage of feature encoding. They wait if necessary and then enter a limited-capacity attentive stage serially where multiple processing channels (“servers”) integrate features of several stimuli in parallel. A core feature of our model is the serial transition from the unlimited-capacity preattentive processing stage to the limited-capacity attentive processing stage. It enables asynchronous attentive processing of multiple stimuli in parallel and is more efficient than a simple chain of two successive, strictly parallel processing stages. The model accounts for response errors by means of two underlying mechanisms, namely, imperfect processing of the servers and, in addition, incomplete search adopted by the observer to maximize search efficiency under an accuracy constraint. For statistical inference, we develop a Monte-Carlo-based parameter estimation procedure, using maximum likelihood (ML) estimation for accuracy-related parameters and minimum distance (MD) estimation for RT-related parameters. We fit the model to two large empirical data sets from two types of visual search tasks. The model captures the accuracy rates almost perfectly and the observed RT distributions quite well, indicating a high explanatory power. The number of independent parallel processing channels that explain both data sets best was five. We also perform a Monte-Carlo model uncertainty analysis and show that the model with the correct number of parallel channels is selected for more than 90% of the simulated samples.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249623000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249623000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

理解注意力资源是如何在视觉处理中部署的是一个基本的和高度争议的话题。作为视觉搜索理论模型的替代方案,我们提出了一种排队处理结构,它需要在并行处理阶段之间进行串行转换。我们为标准视觉搜索任务开发了一个连续时间排队模型来形式化和实现这一概念。该模型被指定为有限时间、单行、多服务器排队系统,在分布级别上考虑可视化搜索中的准确性和响应时间(RT)数据。它采用两个处理阶段。视觉刺激首先经历大量平行的特征编码前注意阶段。如果有必要,它们会等待,然后依次进入一个容量有限的专注阶段,在这个阶段,多个处理通道(“服务器”)并行地整合多个刺激的特征。该模型的一个核心特征是从无限容量的预注意加工阶段到有限容量的注意加工阶段的连续过渡。它能并行地对多个刺激进行异步注意处理,比两个连续的、严格并行的处理阶段的简单链更有效。该模型通过两种潜在的机制来解释响应误差,即服务器的不完全处理和观察者在精度约束下为最大化搜索效率而采取的不完全搜索。对于统计推断,我们开发了一种基于蒙特卡罗的参数估计程序,对精度相关参数使用最大似然(ML)估计,对rt相关参数使用最小距离(MD)估计。我们将模型拟合到来自两种类型的视觉搜索任务的两个大型经验数据集。该模型几乎完美地捕获了准确率,并且观察到的RT分布相当好,表明具有很高的解释力。能够最好地解释两个数据集的独立并行处理通道的数量是5个。我们还进行了蒙特卡罗模型不确定性分析,结果表明,90%以上的模拟样本选择了具有正确并行通道数的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A queueing model of visual search

Understanding how attentional resources are deployed in visual processing is a fundamental and highly debated topic. As an alternative to theoretical models of visual search that propose sequences of separate serial or parallel stages of processing, we suggest a queueing processing structure that entails a serial transition between parallel processing stages. We develop a continuous-time queueing model for standard visual search tasks to formalize and implement this notion. Specified as a finite-time, single-line, multiserver queueing system, the model accounts for both accuracy and response time (RT) data in visual search on a distributional level. It assumes two stages of processing. Visual stimuli first go through a massively parallel preattentive stage of feature encoding. They wait if necessary and then enter a limited-capacity attentive stage serially where multiple processing channels (“servers”) integrate features of several stimuli in parallel. A core feature of our model is the serial transition from the unlimited-capacity preattentive processing stage to the limited-capacity attentive processing stage. It enables asynchronous attentive processing of multiple stimuli in parallel and is more efficient than a simple chain of two successive, strictly parallel processing stages. The model accounts for response errors by means of two underlying mechanisms, namely, imperfect processing of the servers and, in addition, incomplete search adopted by the observer to maximize search efficiency under an accuracy constraint. For statistical inference, we develop a Monte-Carlo-based parameter estimation procedure, using maximum likelihood (ML) estimation for accuracy-related parameters and minimum distance (MD) estimation for RT-related parameters. We fit the model to two large empirical data sets from two types of visual search tasks. The model captures the accuracy rates almost perfectly and the observed RT distributions quite well, indicating a high explanatory power. The number of independent parallel processing channels that explain both data sets best was five. We also perform a Monte-Carlo model uncertainty analysis and show that the model with the correct number of parallel channels is selected for more than 90% of the simulated samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1