{"title":"关于图乘积的二重束缚数","authors":"H. Maimani, Z. Koushki","doi":"10.22108/TOC.2018.114111.1605","DOIUrl":null,"url":null,"abstract":"A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]cap D|geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $gamma_d(G)$. The minimum number of edges $E'$ such that $gamma_d(Gsetminus E)>gamma_d(G)$ is called the double bondage number of $G$ and is denoted by $b_d(G)$. This paper determines that $b_d(Gvee H)$ and exact values of $b(P_ntimes P_2)$, and generalized corona product of graphs.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"8 1","pages":"51-59"},"PeriodicalIF":0.6000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the double bondage number of graphs products\",\"authors\":\"H. Maimani, Z. Koushki\",\"doi\":\"10.22108/TOC.2018.114111.1605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]cap D|geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $gamma_d(G)$. The minimum number of edges $E'$ such that $gamma_d(Gsetminus E)>gamma_d(G)$ is called the double bondage number of $G$ and is denoted by $b_d(G)$. This paper determines that $b_d(Gvee H)$ and exact values of $b(P_ntimes P_2)$, and generalized corona product of graphs.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"8 1\",\"pages\":\"51-59\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2018.114111.1605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2018.114111.1605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A set $D$ of vertices of graph $G$ is called $double$ $dominating$ $set$ if for any vertex $v$, $|N[v]cap D|geq 2$. The minimum cardinality of $double$ $domination$ of $G$ is denoted by $gamma_d(G)$. The minimum number of edges $E'$ such that $gamma_d(Gsetminus E)>gamma_d(G)$ is called the double bondage number of $G$ and is denoted by $b_d(G)$. This paper determines that $b_d(Gvee H)$ and exact values of $b(P_ntimes P_2)$, and generalized corona product of graphs.