可注射生物活性玻璃基糊剂在骨组织修复中的潜在用途

Q1 Materials Science Biomedical Glasses Pub Date : 2020-01-01 DOI:10.1515/bglass-2020-0003
D. Tulyaganov, A. Akbarov, N. Ziyadullaeva, Bekhzod Khabilov, F. Baino
{"title":"可注射生物活性玻璃基糊剂在骨组织修复中的潜在用途","authors":"D. Tulyaganov, A. Akbarov, N. Ziyadullaeva, Bekhzod Khabilov, F. Baino","doi":"10.1515/bglass-2020-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this study, injectable pastes based on a clinically-tested bioactive glass and glycerol (used as organic carrier) were produced and characterized for further application in regenerative medicine. The paste preparation route, apatite-forming ability in simulated body fluid (SBF) solution, viscoelastic behavior and structural features revealed by means of scanning electron microscopy (SEM), FTIR and Raman spectroscopy were presented and discussed, also on the basis of the major experimental data obtained in previous studies. A mechanism illustrating the chemical interaction between bioactive glass and glycerol was proposed to support the bioactivity mechanism of injectable pastes. Then, the results of In vivo tests, conducted through injecting moldable paste into osseous defects made in rabbit’s femur, were reported. Animal studies revealed good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone, and further supported the suitability of these bioactive glass pastes in bone regenerative medicine.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":"6 1","pages":"23 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2020-0003","citationCount":"4","resultStr":"{\"title\":\"Injectable bioactive glass-based pastes for potential use in bone tissue repair\",\"authors\":\"D. Tulyaganov, A. Akbarov, N. Ziyadullaeva, Bekhzod Khabilov, F. Baino\",\"doi\":\"10.1515/bglass-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, injectable pastes based on a clinically-tested bioactive glass and glycerol (used as organic carrier) were produced and characterized for further application in regenerative medicine. The paste preparation route, apatite-forming ability in simulated body fluid (SBF) solution, viscoelastic behavior and structural features revealed by means of scanning electron microscopy (SEM), FTIR and Raman spectroscopy were presented and discussed, also on the basis of the major experimental data obtained in previous studies. A mechanism illustrating the chemical interaction between bioactive glass and glycerol was proposed to support the bioactivity mechanism of injectable pastes. Then, the results of In vivo tests, conducted through injecting moldable paste into osseous defects made in rabbit’s femur, were reported. Animal studies revealed good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone, and further supported the suitability of these bioactive glass pastes in bone regenerative medicine.\",\"PeriodicalId\":37354,\"journal\":{\"name\":\"Biomedical Glasses\",\"volume\":\"6 1\",\"pages\":\"23 - 33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/bglass-2020-0003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Glasses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bglass-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Glasses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bglass-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4

摘要

摘要在本研究中,基于临床测试的生物活性玻璃和甘油(用作有机载体)制备并表征了可注射糊剂,以进一步应用于再生医学。在前人研究的主要实验数据的基础上,介绍并讨论了糊剂的制备路线、模拟体液(SBF)溶液中磷灰石的形成能力、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)和拉曼光谱(Raman spectroscopy)揭示的粘弹性行为和结构特征。提出了一种阐明生物活性玻璃与甘油之间化学相互作用的机制,以支持可注射糊剂的生物活性机制。然后,报告了通过将可成型糊剂注射到兔股骨骨缺损中进行的体内试验的结果。动物研究表明,良好的骨传导性和骨结合最初发生在玻璃和宿主骨之间的界面,并进一步支持了这些生物活性玻璃糊剂在骨再生医学中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Injectable bioactive glass-based pastes for potential use in bone tissue repair
Abstract In this study, injectable pastes based on a clinically-tested bioactive glass and glycerol (used as organic carrier) were produced and characterized for further application in regenerative medicine. The paste preparation route, apatite-forming ability in simulated body fluid (SBF) solution, viscoelastic behavior and structural features revealed by means of scanning electron microscopy (SEM), FTIR and Raman spectroscopy were presented and discussed, also on the basis of the major experimental data obtained in previous studies. A mechanism illustrating the chemical interaction between bioactive glass and glycerol was proposed to support the bioactivity mechanism of injectable pastes. Then, the results of In vivo tests, conducted through injecting moldable paste into osseous defects made in rabbit’s femur, were reported. Animal studies revealed good osteoconductivity and bone bonding that occurred initially at the interface between the glass and the host bone, and further supported the suitability of these bioactive glass pastes in bone regenerative medicine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Glasses
Biomedical Glasses Materials Science-Surfaces, Coatings and Films
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊介绍: Biomedical Glasses is an international Open Access-only journal covering the field of glasses for biomedical applications. The scope of the journal covers the science and technology of glasses and glass-based materials intended for applications in medicine and dentistry. It includes: Chemistry, physics, structure, design and characterization of biomedical glasses Surface science and interactions of biomedical glasses with aqueous and biological media Modeling structure and reactivity of biomedical glasses and their interfaces Biocompatibility of biomedical glasses Processing of biomedical glasses to achieve specific forms and functionality Biomedical glass coatings and composites In vitro and in vivo evaluation of biomedical glasses Glasses and glass-ceramics in engineered regeneration of tissues and organs Glass-based devices for medical and dental applications Application of glasses and glass-ceramics in healthcare.
期刊最新文献
Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering Novel borosilicate bioactive scaffolds with persistent luminescence Modelling the elastic mechanical properties of bioactive glass-derived scaffolds Tantalum doped SiO2-CaO-P2O5 based bioactive glasses: Investigation of in vitro bioactivity and antibacterial activities Yttrium doped phosphate-based glasses: structural and degradation analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1