使用机器学习方法的混合整数程序的排序约束松弛

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2023-01-01 DOI:10.1016/j.ejco.2023.100061
Jake Weiner , Andreas T. Ernst , Xiaodong Li , Yuan Sun
{"title":"使用机器学习方法的混合整数程序的排序约束松弛","authors":"Jake Weiner ,&nbsp;Andreas T. Ernst ,&nbsp;Xiaodong Li ,&nbsp;Yuan Sun","doi":"10.1016/j.ejco.2023.100061","DOIUrl":null,"url":null,"abstract":"<div><p>Solving large-scale Mixed Integer Linear Programs (MIP) can be difficult without advanced algorithms such as decomposition based techniques. Even if a decomposition technique might be appropriate, there are still many possible decompositions for any large MIP and it may not be obvious which will be the most effective. The quality of a decomposition depends on both the tightness of the dual bound, in our case generated via Lagrangian Relaxation, and the computational time required to produce that bound. Both of these factors are difficult to predict, motivating the use of a Machine Learning function to predict decomposition quality based a score that combines both bound quality and computational time. This paper presents a comprehensive analysis of the predictive capabilities of a ML function for predicting the quality of MIP decompositions created via constraint relaxation. In this analysis, the role of instance similarity and ML prediction quality is explored, as well as the benchmarking of a ML ranking function against existing heuristic functions. For this analysis, a new dataset consisting of over 40000 unique decompositions sampled from across 24 instances from the MIPLIB2017 library has been established. These decompostions have been created by both a greedy relaxation algorithm as well as a population based multi-objective algorithm, which has previously been shown to produce high quality decompositions. In this paper, we demonstrate that a ML ranking function is able to provide state-of-the-art predictions when benchmarked against existing heuristic ranking functions. Additionally, we demonstrate that by only considering a small set of features related to the relaxed constraints in each decomposition, a ML ranking function is still able to be competitive with heuristic techniques. Such a finding is promising for future constraint relaxation approaches, as these features can be used to guide decomposition creation. Finally, we highlight where a ML ranking function would be beneficial in a decomposition creation framework.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100061"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ranking constraint relaxations for mixed integer programs using a machine learning approach\",\"authors\":\"Jake Weiner ,&nbsp;Andreas T. Ernst ,&nbsp;Xiaodong Li ,&nbsp;Yuan Sun\",\"doi\":\"10.1016/j.ejco.2023.100061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solving large-scale Mixed Integer Linear Programs (MIP) can be difficult without advanced algorithms such as decomposition based techniques. Even if a decomposition technique might be appropriate, there are still many possible decompositions for any large MIP and it may not be obvious which will be the most effective. The quality of a decomposition depends on both the tightness of the dual bound, in our case generated via Lagrangian Relaxation, and the computational time required to produce that bound. Both of these factors are difficult to predict, motivating the use of a Machine Learning function to predict decomposition quality based a score that combines both bound quality and computational time. This paper presents a comprehensive analysis of the predictive capabilities of a ML function for predicting the quality of MIP decompositions created via constraint relaxation. In this analysis, the role of instance similarity and ML prediction quality is explored, as well as the benchmarking of a ML ranking function against existing heuristic functions. For this analysis, a new dataset consisting of over 40000 unique decompositions sampled from across 24 instances from the MIPLIB2017 library has been established. These decompostions have been created by both a greedy relaxation algorithm as well as a population based multi-objective algorithm, which has previously been shown to produce high quality decompositions. In this paper, we demonstrate that a ML ranking function is able to provide state-of-the-art predictions when benchmarked against existing heuristic ranking functions. Additionally, we demonstrate that by only considering a small set of features related to the relaxed constraints in each decomposition, a ML ranking function is still able to be competitive with heuristic techniques. Such a finding is promising for future constraint relaxation approaches, as these features can be used to guide decomposition creation. Finally, we highlight where a ML ranking function would be beneficial in a decomposition creation framework.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"11 \",\"pages\":\"Article 100061\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

如果没有先进的算法,如基于分解的技术,求解大规模混合整数线性规划(MIP)是很困难的。即使一种分解技术可能是合适的,对于任何大型MIP仍然存在许多可能的分解,并且可能不清楚哪种分解最有效。分解的质量取决于对偶边界的紧密性,在我们的例子中是通过拉格朗日松弛生成的,以及产生该边界所需的计算时间。这两个因素都很难预测,这促使我们使用机器学习功能来预测分解质量,该功能基于结合了边界质量和计算时间的分数。本文全面分析了ML函数的预测能力,用于预测通过约束松弛创建的MIP分解的质量。在此分析中,研究了实例相似性和ML预测质量的作用,以及ML排序函数与现有启发式函数的基准测试。为了进行这项分析,已经建立了一个新的数据集,该数据集包含从MIPLIB2017库的24个实例中采样的40000多个唯一分解。这些分解是由贪婪松弛算法和基于种群的多目标算法创建的,这些算法先前已被证明可以产生高质量的分解。在本文中,我们证明了当与现有的启发式排名函数进行基准测试时,ML排名函数能够提供最先进的预测。此外,我们证明,通过只考虑每个分解中与宽松约束相关的一小部分特征集,ML排序函数仍然能够与启发式技术竞争。这样的发现对于未来的约束放松方法是有希望的,因为这些特征可以用来指导分解的创建。最后,我们强调了ML排序函数在分解创建框架中的用处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ranking constraint relaxations for mixed integer programs using a machine learning approach

Solving large-scale Mixed Integer Linear Programs (MIP) can be difficult without advanced algorithms such as decomposition based techniques. Even if a decomposition technique might be appropriate, there are still many possible decompositions for any large MIP and it may not be obvious which will be the most effective. The quality of a decomposition depends on both the tightness of the dual bound, in our case generated via Lagrangian Relaxation, and the computational time required to produce that bound. Both of these factors are difficult to predict, motivating the use of a Machine Learning function to predict decomposition quality based a score that combines both bound quality and computational time. This paper presents a comprehensive analysis of the predictive capabilities of a ML function for predicting the quality of MIP decompositions created via constraint relaxation. In this analysis, the role of instance similarity and ML prediction quality is explored, as well as the benchmarking of a ML ranking function against existing heuristic functions. For this analysis, a new dataset consisting of over 40000 unique decompositions sampled from across 24 instances from the MIPLIB2017 library has been established. These decompostions have been created by both a greedy relaxation algorithm as well as a population based multi-objective algorithm, which has previously been shown to produce high quality decompositions. In this paper, we demonstrate that a ML ranking function is able to provide state-of-the-art predictions when benchmarked against existing heuristic ranking functions. Additionally, we demonstrate that by only considering a small set of features related to the relaxed constraints in each decomposition, a ML ranking function is still able to be competitive with heuristic techniques. Such a finding is promising for future constraint relaxation approaches, as these features can be used to guide decomposition creation. Finally, we highlight where a ML ranking function would be beneficial in a decomposition creation framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
In memoriam: Marguerite Straus Frank (1927–2024) A compact model for the home healthcare routing and scheduling problem Interior point methods in the year 2025 Editorial Board Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1