Yechen Li, Daixing Zhang, Zhuo Wan, Xiaoping Yang, Q. Cai
{"title":"锌/锶掺杂羟基磷灰石作为功能填料提高牙科树脂复合材料的抗菌和矿化性能","authors":"Yechen Li, Daixing Zhang, Zhuo Wan, Xiaoping Yang, Q. Cai","doi":"10.1088/1748-605X/ac6b72","DOIUrl":null,"url":null,"abstract":"This study intends to improve the antibacterial and mineralization performance of photocurable dental resin composites (DRCs) to reduce the possibility of repair failure caused by secondary caries. To the end, functionalized hydroxyapatite (HAp), including Zn-doped (Zn/HAp) and Sr-doped HAp (Sr/HAp), were added into the bisphenol A glycidyl methacrylate and triethylene glycol dimethacrylate mixture, providing the DRCs with antibacterial and mineralization capacity, respectively. By controlling the total amount of inorganic filler at 70 wt%, these HAp powders were introduced into the resin matrix with barium glass powder (BaGP), while the ratios of HAp to aGP varied from 0:70 to 8:62. And the 8 wt% of HAp could be pure HAp, Zn/HAp, Sr/HAp, or Zn/HAp +Sr/HAp in different ratios (i.e. 2:6, 4:4, 6:2). Though the fillers varied, the obtained DRCs displayed similar micro-morphology, flexural strength (∼110 MPa) and modulus (∼7 GPa), and Vickers hardness (∼65). When the doping amounts of Sr2+/Zn2+ reached 15 mol% of Ca2+ in the Sr/HAp and Zn/HAp, the DRCs displayed a high antibacterial activity by killing ∼95% Staphylococcus aureus, and induced rich mineral deposition on surface in simulated body fluid. The incorporation of the Zn/HAp and Sr/HAp into the DRCs did not cause significant cytotoxicity, with L929 fibroblasts remaining >99% viability as cultured in extracts made from the DRCs. Therein, the DRC preparations containing both Zn/HAp and Sr/HAp have achieved improvements in both the biomineralization and antibacterial performance, as well as, having sufficient mechanical properties and excellent biocompatibility for dental restoration.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers\",\"authors\":\"Yechen Li, Daixing Zhang, Zhuo Wan, Xiaoping Yang, Q. Cai\",\"doi\":\"10.1088/1748-605X/ac6b72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study intends to improve the antibacterial and mineralization performance of photocurable dental resin composites (DRCs) to reduce the possibility of repair failure caused by secondary caries. To the end, functionalized hydroxyapatite (HAp), including Zn-doped (Zn/HAp) and Sr-doped HAp (Sr/HAp), were added into the bisphenol A glycidyl methacrylate and triethylene glycol dimethacrylate mixture, providing the DRCs with antibacterial and mineralization capacity, respectively. By controlling the total amount of inorganic filler at 70 wt%, these HAp powders were introduced into the resin matrix with barium glass powder (BaGP), while the ratios of HAp to aGP varied from 0:70 to 8:62. And the 8 wt% of HAp could be pure HAp, Zn/HAp, Sr/HAp, or Zn/HAp +Sr/HAp in different ratios (i.e. 2:6, 4:4, 6:2). Though the fillers varied, the obtained DRCs displayed similar micro-morphology, flexural strength (∼110 MPa) and modulus (∼7 GPa), and Vickers hardness (∼65). When the doping amounts of Sr2+/Zn2+ reached 15 mol% of Ca2+ in the Sr/HAp and Zn/HAp, the DRCs displayed a high antibacterial activity by killing ∼95% Staphylococcus aureus, and induced rich mineral deposition on surface in simulated body fluid. The incorporation of the Zn/HAp and Sr/HAp into the DRCs did not cause significant cytotoxicity, with L929 fibroblasts remaining >99% viability as cultured in extracts made from the DRCs. Therein, the DRC preparations containing both Zn/HAp and Sr/HAp have achieved improvements in both the biomineralization and antibacterial performance, as well as, having sufficient mechanical properties and excellent biocompatibility for dental restoration.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ac6b72\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac6b72","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dental resin composites with improved antibacterial and mineralization properties via incorporating zinc/strontium-doped hydroxyapatite as functional fillers
This study intends to improve the antibacterial and mineralization performance of photocurable dental resin composites (DRCs) to reduce the possibility of repair failure caused by secondary caries. To the end, functionalized hydroxyapatite (HAp), including Zn-doped (Zn/HAp) and Sr-doped HAp (Sr/HAp), were added into the bisphenol A glycidyl methacrylate and triethylene glycol dimethacrylate mixture, providing the DRCs with antibacterial and mineralization capacity, respectively. By controlling the total amount of inorganic filler at 70 wt%, these HAp powders were introduced into the resin matrix with barium glass powder (BaGP), while the ratios of HAp to aGP varied from 0:70 to 8:62. And the 8 wt% of HAp could be pure HAp, Zn/HAp, Sr/HAp, or Zn/HAp +Sr/HAp in different ratios (i.e. 2:6, 4:4, 6:2). Though the fillers varied, the obtained DRCs displayed similar micro-morphology, flexural strength (∼110 MPa) and modulus (∼7 GPa), and Vickers hardness (∼65). When the doping amounts of Sr2+/Zn2+ reached 15 mol% of Ca2+ in the Sr/HAp and Zn/HAp, the DRCs displayed a high antibacterial activity by killing ∼95% Staphylococcus aureus, and induced rich mineral deposition on surface in simulated body fluid. The incorporation of the Zn/HAp and Sr/HAp into the DRCs did not cause significant cytotoxicity, with L929 fibroblasts remaining >99% viability as cultured in extracts made from the DRCs. Therein, the DRC preparations containing both Zn/HAp and Sr/HAp have achieved improvements in both the biomineralization and antibacterial performance, as well as, having sufficient mechanical properties and excellent biocompatibility for dental restoration.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters