{"title":"一个灵活的实验室练习,介绍均方位移的实用方面","authors":"Alexander B. C. Mantilla, N. Kuwada","doi":"10.35459/TBP.2020.000157","DOIUrl":null,"url":null,"abstract":"\n Mean squared displacement is a standard biophysical tool for characterizing the motion of particles in a thermally dominated environment, yet it is rarely formally introduced or discussed in undergraduate curriculum. Here, we provide a flexible and adaptable experimental or computational lab activity that provides a practical introduction to mean squared displacement and anomalous diffusion that includes optional experimental protocols and computational simulation techniques for data collection and discusses a variety of analysis techniques. This lab activity has been implemented both face-to-face and completely online and provides crucial experience in important research techniques, helping to bridge traditional undergraduate curriculum and modern biophysics research.","PeriodicalId":72403,"journal":{"name":"Biophysicist (Rockville, Md.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flexible Laboratory Exercise Introducing Practical Aspects of Mean Squared Displacement\",\"authors\":\"Alexander B. C. Mantilla, N. Kuwada\",\"doi\":\"10.35459/TBP.2020.000157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Mean squared displacement is a standard biophysical tool for characterizing the motion of particles in a thermally dominated environment, yet it is rarely formally introduced or discussed in undergraduate curriculum. Here, we provide a flexible and adaptable experimental or computational lab activity that provides a practical introduction to mean squared displacement and anomalous diffusion that includes optional experimental protocols and computational simulation techniques for data collection and discusses a variety of analysis techniques. This lab activity has been implemented both face-to-face and completely online and provides crucial experience in important research techniques, helping to bridge traditional undergraduate curriculum and modern biophysics research.\",\"PeriodicalId\":72403,\"journal\":{\"name\":\"Biophysicist (Rockville, Md.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysicist (Rockville, Md.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35459/TBP.2020.000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysicist (Rockville, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35459/TBP.2020.000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Flexible Laboratory Exercise Introducing Practical Aspects of Mean Squared Displacement
Mean squared displacement is a standard biophysical tool for characterizing the motion of particles in a thermally dominated environment, yet it is rarely formally introduced or discussed in undergraduate curriculum. Here, we provide a flexible and adaptable experimental or computational lab activity that provides a practical introduction to mean squared displacement and anomalous diffusion that includes optional experimental protocols and computational simulation techniques for data collection and discusses a variety of analysis techniques. This lab activity has been implemented both face-to-face and completely online and provides crucial experience in important research techniques, helping to bridge traditional undergraduate curriculum and modern biophysics research.