还原氧化石墨烯(rGO)混合HVOF喷涂纳米结构涂层的特性

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Surface Engineering Pub Date : 2023-04-03 DOI:10.1080/02670844.2023.2232967
A. Srikanth, V. Bolleddu
{"title":"还原氧化石墨烯(rGO)混合HVOF喷涂纳米结构涂层的特性","authors":"A. Srikanth, V. Bolleddu","doi":"10.1080/02670844.2023.2232967","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-velocity oxyfuel (HVOF) sprayed ceramic coatings possess less porosity and exceptional cohesive strength as compared to the air plasma sprayed ceramic coatings. In particular, the HVOF-sprayed tungsten carbide-cobalt (WC-Co) coatings have the disadvantage of unexpected brittle fracture. These coatings usually fail at higher levels of stress because of their lower fracture toughness that results due to decarburization occurring during the deposition of the coatings. In this work, the HVOF-sprayed nanostructured WC-25wt-%Co coatings have been investigated with and without the addition of rGO. It was found in the microstructure of 1.5% rGO-added WC-25wt-%Co coatings that the rGO has been pulled out from the matrix and wrapped in the fractured regions. It was also observed with an increasing percentage of rGO addition that the porosity in the WC-25wt-%Co coatings has been reduced due to a reduction in the number of pores.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"421 - 432"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characteristics of reduced graphene oxide (rGO) mixed HVOF-sprayed nanostructured coatings\",\"authors\":\"A. Srikanth, V. Bolleddu\",\"doi\":\"10.1080/02670844.2023.2232967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High-velocity oxyfuel (HVOF) sprayed ceramic coatings possess less porosity and exceptional cohesive strength as compared to the air plasma sprayed ceramic coatings. In particular, the HVOF-sprayed tungsten carbide-cobalt (WC-Co) coatings have the disadvantage of unexpected brittle fracture. These coatings usually fail at higher levels of stress because of their lower fracture toughness that results due to decarburization occurring during the deposition of the coatings. In this work, the HVOF-sprayed nanostructured WC-25wt-%Co coatings have been investigated with and without the addition of rGO. It was found in the microstructure of 1.5% rGO-added WC-25wt-%Co coatings that the rGO has been pulled out from the matrix and wrapped in the fractured regions. It was also observed with an increasing percentage of rGO addition that the porosity in the WC-25wt-%Co coatings has been reduced due to a reduction in the number of pores.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"39 1\",\"pages\":\"421 - 432\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2232967\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2232967","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 1

摘要

与空气等离子喷涂陶瓷涂层相比,高速氧燃料喷涂陶瓷涂层具有更小的孔隙率和优异的粘结强度。特别地,HVOF喷涂的碳化钨-钴(WC-Co)涂层具有意想不到的脆性断裂的缺点。这些涂层通常在较高的应力水平下失效,因为它们的断裂韧性较低,这是由于在涂层沉积过程中发生脱碳而导致的。在本工作中,研究了在添加和不添加rGO的情况下HVOF喷涂的WC-25wt-%Co纳米结构涂层。在添加1.5%rGO的WC-25wt-%Co涂层的微观结构中发现,rGO已从基体中拉出并包裹在断裂区域中。还观察到,随着rGO添加百分比的增加,WC-25wt-%Co涂层中的孔隙率由于孔隙数量的减少而减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characteristics of reduced graphene oxide (rGO) mixed HVOF-sprayed nanostructured coatings
ABSTRACT High-velocity oxyfuel (HVOF) sprayed ceramic coatings possess less porosity and exceptional cohesive strength as compared to the air plasma sprayed ceramic coatings. In particular, the HVOF-sprayed tungsten carbide-cobalt (WC-Co) coatings have the disadvantage of unexpected brittle fracture. These coatings usually fail at higher levels of stress because of their lower fracture toughness that results due to decarburization occurring during the deposition of the coatings. In this work, the HVOF-sprayed nanostructured WC-25wt-%Co coatings have been investigated with and without the addition of rGO. It was found in the microstructure of 1.5% rGO-added WC-25wt-%Co coatings that the rGO has been pulled out from the matrix and wrapped in the fractured regions. It was also observed with an increasing percentage of rGO addition that the porosity in the WC-25wt-%Co coatings has been reduced due to a reduction in the number of pores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
期刊最新文献
Examination of the metallization behaviour of an ABS surface Performance of electrochemically deposited hydroxyapatite on textured 316L SS for applications in biomedicine Vanadium promoted ZnO films: effects on optical and photocatalytic properties Preparation and frictional characteristics of solid lubrication coating on CFRP surface Laser surface texturing of dies in strip drawing of DP600 steel sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1