热带气旋Yaas(2021)在孟加拉湾形成的龙卷风爆发

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2022-10-27 DOI:10.1007/s13143-022-00302-4
Nasreen Akter, M. Rafiuddin
{"title":"热带气旋Yaas(2021)在孟加拉湾形成的龙卷风爆发","authors":"Nasreen Akter,&nbsp;M. Rafiuddin","doi":"10.1007/s13143-022-00302-4","DOIUrl":null,"url":null,"abstract":"<div><p>A tornado outbreak occurred in West Bengal (WB), India, about 15–16 h before the landfall of Cyclone Yaas formed in May 2021 over the Bay of Bengal. High-resolution analysis data have been used to investigate the possible tornadoes in terms of environmental conditions connecting to the cyclone. The WB tornado is found as intense as EF2–3 on the tornado scale and is likely associated with a mini-supercell. The total shear of 37 m s<sup>−1</sup> from 0–6 km above ground level (AGL) with strong clockwise rotation, the moderate instability (1504 J kg<sup>−1</sup>) and the energy helicity index of 2.2 are the substantial convective parameters related to the WB tornado. Moreover, the favorable environment owning intense bulk shear, a larger value of storm-relative environmental helicity in the lowest 1 km AGL and high values of significant tornado parameter (STP) urge the potentiality of multiple tornadoes spawning in multi-days accompanying the landfalling Cyclone Yaas. The right-front quadrant of the cyclone is found to be more vulnerable for developing moderate to severe tornadoes within its rainbands. The positive potential vorticity anomalies evidence the cloud-scale cyclonic circulation from surface to 400 hPa with the maximum in the mid-level.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 1","pages":"59 - 67"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Outbreak of a Tornado with Tropical Cyclone Yaas (2021) Formed over the Bay of Bengal\",\"authors\":\"Nasreen Akter,&nbsp;M. Rafiuddin\",\"doi\":\"10.1007/s13143-022-00302-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A tornado outbreak occurred in West Bengal (WB), India, about 15–16 h before the landfall of Cyclone Yaas formed in May 2021 over the Bay of Bengal. High-resolution analysis data have been used to investigate the possible tornadoes in terms of environmental conditions connecting to the cyclone. The WB tornado is found as intense as EF2–3 on the tornado scale and is likely associated with a mini-supercell. The total shear of 37 m s<sup>−1</sup> from 0–6 km above ground level (AGL) with strong clockwise rotation, the moderate instability (1504 J kg<sup>−1</sup>) and the energy helicity index of 2.2 are the substantial convective parameters related to the WB tornado. Moreover, the favorable environment owning intense bulk shear, a larger value of storm-relative environmental helicity in the lowest 1 km AGL and high values of significant tornado parameter (STP) urge the potentiality of multiple tornadoes spawning in multi-days accompanying the landfalling Cyclone Yaas. The right-front quadrant of the cyclone is found to be more vulnerable for developing moderate to severe tornadoes within its rainbands. The positive potential vorticity anomalies evidence the cloud-scale cyclonic circulation from surface to 400 hPa with the maximum in the mid-level.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"59 1\",\"pages\":\"59 - 67\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-022-00302-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-022-00302-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

2021年5月在孟加拉湾形成的气旋“雅斯”登陆前约15-16小时,印度西孟加拉邦爆发龙卷风。高分辨率分析数据已被用于调查与气旋有关的环境条件下可能出现的龙卷风。WB龙卷风强度为EF2-3级,可能与迷你超级单体有关。距地面0 ~ 6 km的总切变37 m s−1,强顺时针旋转,中等不稳定性(1504 J kg−1)和能量螺旋度指数2.2是与WB龙卷风相关的重要对流参数。此外,强烈的体切变、最低1 km AGL处较大的风暴相对环境螺旋度和较高的显著龙卷风参数(STP)值等有利环境,促使气旋Yaas登陆后多日内可能形成多个龙卷风。气旋的右前象限在其雨带内更容易形成中至强龙卷风。正位涡度异常反映了从地面到400 hPa的云尺度气旋环流,在中层最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outbreak of a Tornado with Tropical Cyclone Yaas (2021) Formed over the Bay of Bengal

A tornado outbreak occurred in West Bengal (WB), India, about 15–16 h before the landfall of Cyclone Yaas formed in May 2021 over the Bay of Bengal. High-resolution analysis data have been used to investigate the possible tornadoes in terms of environmental conditions connecting to the cyclone. The WB tornado is found as intense as EF2–3 on the tornado scale and is likely associated with a mini-supercell. The total shear of 37 m s−1 from 0–6 km above ground level (AGL) with strong clockwise rotation, the moderate instability (1504 J kg−1) and the energy helicity index of 2.2 are the substantial convective parameters related to the WB tornado. Moreover, the favorable environment owning intense bulk shear, a larger value of storm-relative environmental helicity in the lowest 1 km AGL and high values of significant tornado parameter (STP) urge the potentiality of multiple tornadoes spawning in multi-days accompanying the landfalling Cyclone Yaas. The right-front quadrant of the cyclone is found to be more vulnerable for developing moderate to severe tornadoes within its rainbands. The positive potential vorticity anomalies evidence the cloud-scale cyclonic circulation from surface to 400 hPa with the maximum in the mid-level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Dynamic Variations in Wind Speed Intensity Across China and Their Association with Atmospheric Circulation Patterns Impact of Cloud Vertical Overlap on Cloud Radiative Effect in the Korean Integrated Model (KIM) Seasonal Simulations during Boreal Summer and Winter The Sensitivity of Extreme Rainfall Simulations to WRF Parameters During Two Intense Southwest Monsoon Events in the Philippines Abnormal Climate in 2022 Summer in Korea and Asia Correction to: Effects of Long-term Climate Change on Typhoon Rainfall Associated with Southwesterly Monsoon Flow near Taiwan: Mindulle (2004) and Morakot (2009)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1