Ali Sahragard , Pakorn Varanusupakul , Manuel Miró
{"title":"纳米材料修饰电极在环境污染物流通电化学传感中的应用综述","authors":"Ali Sahragard , Pakorn Varanusupakul , Manuel Miró","doi":"10.1016/j.teac.2023.e00208","DOIUrl":null,"url":null,"abstract":"<div><p>The current state-of-the-art of nanomaterial-based electrochemical sensors in flow injection (NBES-FI) platforms for in-line determination of environmental pollutants (since 2013 to mid-2023) is herein critically reviewed. The synergistic effects of FI platforms and nanomaterial-based modifiers, such as metal nanoparticles and carbon-based nanomaterials, for minimizing electrode fouling, alleviating overpotential, and boosting the overall figures of merit are discussed in detail. The role of experimental parameters including (i) the electrode nature, shape, design and configuration, (ii) the synthetic routes of (nano)materials, and (iii) the electrochemical detection technique on the analytical performance of NBES-FI is thoroughly evaluated. Current challenges and needs for real-world exploitation of NBES-FI in environmental settings are outlined along with perspectives for the integration of NBES-FI with microextraction approaches and the exploitation of 3D printing technology for fabrication of customized fluidic platforms.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00208"},"PeriodicalIF":11.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterial decorated electrodes in flow-through electrochemical sensing of environmental pollutants: A critical review\",\"authors\":\"Ali Sahragard , Pakorn Varanusupakul , Manuel Miró\",\"doi\":\"10.1016/j.teac.2023.e00208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current state-of-the-art of nanomaterial-based electrochemical sensors in flow injection (NBES-FI) platforms for in-line determination of environmental pollutants (since 2013 to mid-2023) is herein critically reviewed. The synergistic effects of FI platforms and nanomaterial-based modifiers, such as metal nanoparticles and carbon-based nanomaterials, for minimizing electrode fouling, alleviating overpotential, and boosting the overall figures of merit are discussed in detail. The role of experimental parameters including (i) the electrode nature, shape, design and configuration, (ii) the synthetic routes of (nano)materials, and (iii) the electrochemical detection technique on the analytical performance of NBES-FI is thoroughly evaluated. Current challenges and needs for real-world exploitation of NBES-FI in environmental settings are outlined along with perspectives for the integration of NBES-FI with microextraction approaches and the exploitation of 3D printing technology for fabrication of customized fluidic platforms.</p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"39 \",\"pages\":\"Article e00208\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000144\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000144","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Nanomaterial decorated electrodes in flow-through electrochemical sensing of environmental pollutants: A critical review
The current state-of-the-art of nanomaterial-based electrochemical sensors in flow injection (NBES-FI) platforms for in-line determination of environmental pollutants (since 2013 to mid-2023) is herein critically reviewed. The synergistic effects of FI platforms and nanomaterial-based modifiers, such as metal nanoparticles and carbon-based nanomaterials, for minimizing electrode fouling, alleviating overpotential, and boosting the overall figures of merit are discussed in detail. The role of experimental parameters including (i) the electrode nature, shape, design and configuration, (ii) the synthetic routes of (nano)materials, and (iii) the electrochemical detection technique on the analytical performance of NBES-FI is thoroughly evaluated. Current challenges and needs for real-world exploitation of NBES-FI in environmental settings are outlined along with perspectives for the integration of NBES-FI with microextraction approaches and the exploitation of 3D printing technology for fabrication of customized fluidic platforms.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.