{"title":"优先级向量估计:一致性、兼容性、精度","authors":"S. Lipovetsky","doi":"10.13033/ijahp.v12i3.801","DOIUrl":null,"url":null,"abstract":"Various methods of priority vector estimation are known in the Analytic Hierarchy Process (AHP). They include the classical eigenproblem method given by Thomas Saaty, developments in least squares and the multiplicative approach, robust estimation based on transformation of the pairwise ratios to the shares of preferences, and other approaches. In this paper, the priority vectors are completed with validation of data consistency, comparisons of vectors’ compatibility, and estimation of precision for matrix approximation by vectors. The numerical results for different data sizes and consistency show that the considered methods reveal useful features, are simple and convenient, and capable of facilitating practical applications of the AHP in solving various multiple-criteria decision making problems.","PeriodicalId":37297,"journal":{"name":"International Journal of the Analytic Hierarchy Process","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PRIORITY VECTOR ESTIMATION: CONSISTENCY, COMPATIBILITY, PRECISION\",\"authors\":\"S. Lipovetsky\",\"doi\":\"10.13033/ijahp.v12i3.801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various methods of priority vector estimation are known in the Analytic Hierarchy Process (AHP). They include the classical eigenproblem method given by Thomas Saaty, developments in least squares and the multiplicative approach, robust estimation based on transformation of the pairwise ratios to the shares of preferences, and other approaches. In this paper, the priority vectors are completed with validation of data consistency, comparisons of vectors’ compatibility, and estimation of precision for matrix approximation by vectors. The numerical results for different data sizes and consistency show that the considered methods reveal useful features, are simple and convenient, and capable of facilitating practical applications of the AHP in solving various multiple-criteria decision making problems.\",\"PeriodicalId\":37297,\"journal\":{\"name\":\"International Journal of the Analytic Hierarchy Process\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of the Analytic Hierarchy Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13033/ijahp.v12i3.801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of the Analytic Hierarchy Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13033/ijahp.v12i3.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
Various methods of priority vector estimation are known in the Analytic Hierarchy Process (AHP). They include the classical eigenproblem method given by Thomas Saaty, developments in least squares and the multiplicative approach, robust estimation based on transformation of the pairwise ratios to the shares of preferences, and other approaches. In this paper, the priority vectors are completed with validation of data consistency, comparisons of vectors’ compatibility, and estimation of precision for matrix approximation by vectors. The numerical results for different data sizes and consistency show that the considered methods reveal useful features, are simple and convenient, and capable of facilitating practical applications of the AHP in solving various multiple-criteria decision making problems.
期刊介绍:
IJAHP is a scholarly journal that publishes papers about research and applications of the Analytic Hierarchy Process(AHP) and Analytic Network Process(ANP), theories of measurement that can handle tangibles and intangibles; these methods are often applied in multicriteria decision making, prioritization, ranking and resource allocation, especially when groups of people are involved. The journal encourages research papers in both theory and applications. Empirical investigations, comparisons and exemplary real-world applications in diverse areas are particularly welcome.