欧米茄-60上辐射波的温度剖面诊断

IF 1.6 3区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS High Energy Density Physics Pub Date : 2021-06-01 DOI:10.1016/j.hedp.2021.100939
H.M. Johns , C.L. Fryer , S.R. Wood , C.J. Fontes , P.M. Kozlowski , N.E. Lanier , A. Liao , T.S. Perry , J.W. Morton , C.R.D. Brown , D.W. Schmidt , T. Cardenas , T.J. Urbatsch , P. Hakel , J. Colgan , S. Coffing , J. Cowan , D. Capelli , L.A. Goodwin , T.E. Quintana , J. Kline
{"title":"欧米茄-60上辐射波的温度剖面诊断","authors":"H.M. Johns ,&nbsp;C.L. Fryer ,&nbsp;S.R. Wood ,&nbsp;C.J. Fontes ,&nbsp;P.M. Kozlowski ,&nbsp;N.E. Lanier ,&nbsp;A. Liao ,&nbsp;T.S. Perry ,&nbsp;J.W. Morton ,&nbsp;C.R.D. Brown ,&nbsp;D.W. Schmidt ,&nbsp;T. Cardenas ,&nbsp;T.J. Urbatsch ,&nbsp;P. Hakel ,&nbsp;J. Colgan ,&nbsp;S. Coffing ,&nbsp;J. Cowan ,&nbsp;D. Capelli ,&nbsp;L.A. Goodwin ,&nbsp;T.E. Quintana ,&nbsp;J. Kline","doi":"10.1016/j.hedp.2021.100939","DOIUrl":null,"url":null,"abstract":"<div><p><span>Predicting and matching radiation wave<span><span> propagation with computational models<span><span> has proven difficult. Information provided by experiments studying radiation flow has been limited when only radiation breakout is measured. We have developed the COAX (co-axial) diagnostic platform to provide spatial temperature profiles of a radiation wave through low density foams as a more detailed constraint for simulations. COAX uses a standard, laser-driven OMEGA-60 halfraum to drive radiation down a titanium-laden silicon oxide foam. Point-projection X-ray </span>absorption spectroscopy perpendicular to the radiation flow measures the spatial profile of titanium ionization. The spectroscopic measurement utilizes a broadband capsule backlighter. Imaging and streak spectroscopy are used to characterize the size and spectrum of this source. Radiography provides an additional constraint by capturing the developing shock as the radiation flow becomes subsonic. The DANTE diagnostic is used to measure the halfraum temperature. We provide a </span></span>spectroscopic analysis of COAX data to determine temperature, and we describe experimental sources of uncertainty. The temperature is obtained by comparison to multi-temperature synthetic spectra post-processed from radiation-hydrodynamics simulations. Quantitative comparison between data and synthetic spectra generated from temperature profiles at relevant simulation times enable determination of a peak temperature of 114 </span></span><span><math><mo>±</mo></math></span> 8 eV at 265 <span><math><mo>±</mo></math></span> 22.4 <span><math><mi>μ</mi></math></span>m from the halfraum. This represents an improvement over the temperature uncertainties of previous radiation flow experiments. Further refinements to the spectroscopic analysis could achieve <span><math><mo>±</mo></math></span> 4 eV. The combination between space-resolved spectroscopy and radiography enables us to determine the distance from the halfraum of both the radiation front and the shock front at the time of measurement. For the example shown in this paper the radiation front position is 600–630 <span><math><mi>μ</mi></math></span>m at 3.43 <span><math><mo>±</mo></math></span> 0.16 ns and the shock front position is 633 <span><math><mi>μ</mi></math></span>m at 3.3 <span><math><mo>±</mo></math></span> 0.24 ns.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"39 ","pages":"Article 100939"},"PeriodicalIF":1.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hedp.2021.100939","citationCount":"7","resultStr":"{\"title\":\"A temperature profile diagnostic for radiation waves on OMEGA-60\",\"authors\":\"H.M. Johns ,&nbsp;C.L. Fryer ,&nbsp;S.R. Wood ,&nbsp;C.J. Fontes ,&nbsp;P.M. Kozlowski ,&nbsp;N.E. Lanier ,&nbsp;A. Liao ,&nbsp;T.S. Perry ,&nbsp;J.W. Morton ,&nbsp;C.R.D. Brown ,&nbsp;D.W. Schmidt ,&nbsp;T. Cardenas ,&nbsp;T.J. Urbatsch ,&nbsp;P. Hakel ,&nbsp;J. Colgan ,&nbsp;S. Coffing ,&nbsp;J. Cowan ,&nbsp;D. Capelli ,&nbsp;L.A. Goodwin ,&nbsp;T.E. Quintana ,&nbsp;J. Kline\",\"doi\":\"10.1016/j.hedp.2021.100939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Predicting and matching radiation wave<span><span> propagation with computational models<span><span> has proven difficult. Information provided by experiments studying radiation flow has been limited when only radiation breakout is measured. We have developed the COAX (co-axial) diagnostic platform to provide spatial temperature profiles of a radiation wave through low density foams as a more detailed constraint for simulations. COAX uses a standard, laser-driven OMEGA-60 halfraum to drive radiation down a titanium-laden silicon oxide foam. Point-projection X-ray </span>absorption spectroscopy perpendicular to the radiation flow measures the spatial profile of titanium ionization. The spectroscopic measurement utilizes a broadband capsule backlighter. Imaging and streak spectroscopy are used to characterize the size and spectrum of this source. Radiography provides an additional constraint by capturing the developing shock as the radiation flow becomes subsonic. The DANTE diagnostic is used to measure the halfraum temperature. We provide a </span></span>spectroscopic analysis of COAX data to determine temperature, and we describe experimental sources of uncertainty. The temperature is obtained by comparison to multi-temperature synthetic spectra post-processed from radiation-hydrodynamics simulations. Quantitative comparison between data and synthetic spectra generated from temperature profiles at relevant simulation times enable determination of a peak temperature of 114 </span></span><span><math><mo>±</mo></math></span> 8 eV at 265 <span><math><mo>±</mo></math></span> 22.4 <span><math><mi>μ</mi></math></span>m from the halfraum. This represents an improvement over the temperature uncertainties of previous radiation flow experiments. Further refinements to the spectroscopic analysis could achieve <span><math><mo>±</mo></math></span> 4 eV. The combination between space-resolved spectroscopy and radiography enables us to determine the distance from the halfraum of both the radiation front and the shock front at the time of measurement. For the example shown in this paper the radiation front position is 600–630 <span><math><mi>μ</mi></math></span>m at 3.43 <span><math><mo>±</mo></math></span> 0.16 ns and the shock front position is 633 <span><math><mi>μ</mi></math></span>m at 3.3 <span><math><mo>±</mo></math></span> 0.24 ns.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"39 \",\"pages\":\"Article 100939\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hedp.2021.100939\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157418182100015X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157418182100015X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 7

摘要

用计算模型预测和匹配辐射波传播已被证明是困难的。当仅测量辐射爆发时,研究辐射流的实验所提供的信息是有限的。我们开发了COAX(同轴)诊断平台,以提供辐射波通过低密度泡沫的空间温度分布,作为模拟的更详细约束。COAX使用标准的,激光驱动的OMEGA-60半峰来驱动含钛氧化硅泡沫的辐射。垂直于辐射流的点投影x射线吸收光谱测量了钛电离的空间分布。光谱测量利用宽带胶囊背光器。成像和条纹光谱被用来表征该源的大小和光谱。当辐射流变为亚音速时,射线照相通过捕捉发展中的激波提供了额外的约束。但丁诊断仪用于测量半峰温度。我们提供了COAX数据的光谱分析来确定温度,并描述了不确定度的实验来源。通过与辐射-流体动力学模拟后处理的多温度合成光谱的比较,得到了温度。将数据与相关模拟时间温度曲线生成的合成光谱进行定量比较,可以确定半峰265±22.4 μm处的峰值温度为114±8 eV。这是对以往辐射流实验温度不确定性的改进。进一步的光谱分析可以达到±4 eV。空间分辨光谱和射线照相相结合,使我们能够在测量时确定到辐射锋和激波锋半峰的距离。以本文为例,在3.43±0.16 ns时,辐射前沿位置为600 ~ 630 μm,在3.3±0.24 ns时,激波前沿位置为633 μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A temperature profile diagnostic for radiation waves on OMEGA-60

Predicting and matching radiation wave propagation with computational models has proven difficult. Information provided by experiments studying radiation flow has been limited when only radiation breakout is measured. We have developed the COAX (co-axial) diagnostic platform to provide spatial temperature profiles of a radiation wave through low density foams as a more detailed constraint for simulations. COAX uses a standard, laser-driven OMEGA-60 halfraum to drive radiation down a titanium-laden silicon oxide foam. Point-projection X-ray absorption spectroscopy perpendicular to the radiation flow measures the spatial profile of titanium ionization. The spectroscopic measurement utilizes a broadband capsule backlighter. Imaging and streak spectroscopy are used to characterize the size and spectrum of this source. Radiography provides an additional constraint by capturing the developing shock as the radiation flow becomes subsonic. The DANTE diagnostic is used to measure the halfraum temperature. We provide a spectroscopic analysis of COAX data to determine temperature, and we describe experimental sources of uncertainty. The temperature is obtained by comparison to multi-temperature synthetic spectra post-processed from radiation-hydrodynamics simulations. Quantitative comparison between data and synthetic spectra generated from temperature profiles at relevant simulation times enable determination of a peak temperature of 114 ± 8 eV at 265 ± 22.4 μm from the halfraum. This represents an improvement over the temperature uncertainties of previous radiation flow experiments. Further refinements to the spectroscopic analysis could achieve ± 4 eV. The combination between space-resolved spectroscopy and radiography enables us to determine the distance from the halfraum of both the radiation front and the shock front at the time of measurement. For the example shown in this paper the radiation front position is 600–630 μm at 3.43 ± 0.16 ns and the shock front position is 633 μm at 3.3 ± 0.24 ns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Energy Density Physics
High Energy Density Physics PHYSICS, FLUIDS & PLASMAS-
CiteScore
4.20
自引率
6.20%
发文量
13
审稿时长
6-12 weeks
期刊介绍: High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings. Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.
期刊最新文献
Editorial Board Dynamic localized hot spot mix extraction from images in ICF experiments Study of shocks and ablation front in diamond ablator during a capsule implosion experiment at the National Ignition Facility FLAIM: A reduced volume ignition model for the compression and thermonuclear burn of spherical fuel capsules Frustraum 1100 experimental campaign on the national ignition facility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1