Fabio Biondani, Marco Morandini, Gian Luca Ghiringhelli, Potito Cordisco, Mauro Terraneo
{"title":"一个开放存取的数据库,用于评估颗粒阻尼器模拟工具","authors":"Fabio Biondani, Marco Morandini, Gian Luca Ghiringhelli, Potito Cordisco, Mauro Terraneo","doi":"10.1007/s10035-023-01333-y","DOIUrl":null,"url":null,"abstract":"<div><p>A particle damper (PD) is an enclosure partially filled with small particles that can help to dampen the vibration of a structure. Despite its simplicity, the reliable prediction of the behavior of such a device in arbitrary operative conditions appears to be very difficult due to the complex non-linear interactions between the particles and the system. An experimental methodology is defined with the aim of minimizing the bias due to the PD non-linear response. The effect of the mutual orientation of motion, gravity, and enclosure and of different disturbance inputs on the performance of a PD is investigated in order to make available a set of reference experimental results for correlation purposes with prediction tools. An open-access database, gathering all the test results, is made available.\n</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01333-y.pdf","citationCount":"0","resultStr":"{\"title\":\"An open-access database for the assessment of particle damper simulation tools\",\"authors\":\"Fabio Biondani, Marco Morandini, Gian Luca Ghiringhelli, Potito Cordisco, Mauro Terraneo\",\"doi\":\"10.1007/s10035-023-01333-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A particle damper (PD) is an enclosure partially filled with small particles that can help to dampen the vibration of a structure. Despite its simplicity, the reliable prediction of the behavior of such a device in arbitrary operative conditions appears to be very difficult due to the complex non-linear interactions between the particles and the system. An experimental methodology is defined with the aim of minimizing the bias due to the PD non-linear response. The effect of the mutual orientation of motion, gravity, and enclosure and of different disturbance inputs on the performance of a PD is investigated in order to make available a set of reference experimental results for correlation purposes with prediction tools. An open-access database, gathering all the test results, is made available.\\n</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-023-01333-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01333-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01333-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An open-access database for the assessment of particle damper simulation tools
A particle damper (PD) is an enclosure partially filled with small particles that can help to dampen the vibration of a structure. Despite its simplicity, the reliable prediction of the behavior of such a device in arbitrary operative conditions appears to be very difficult due to the complex non-linear interactions between the particles and the system. An experimental methodology is defined with the aim of minimizing the bias due to the PD non-linear response. The effect of the mutual orientation of motion, gravity, and enclosure and of different disturbance inputs on the performance of a PD is investigated in order to make available a set of reference experimental results for correlation purposes with prediction tools. An open-access database, gathering all the test results, is made available.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.