Andrey Felipe Casas-Pulido, M. M. Hernández-Cely, Oscar Mauricio Rodríguez-Hernández
{"title":"人工神经网络在水平管内液-液流动实验分析中的应用","authors":"Andrey Felipe Casas-Pulido, M. M. Hernández-Cely, Oscar Mauricio Rodríguez-Hernández","doi":"10.18273/revuin.v22n1-2023005","DOIUrl":null,"url":null,"abstract":"El objetivo de este trabajo es la aplicación de una red neuronal artificial para la predicción de la fracción volumétrica (holdup) de flujo bifásico (aceite-agua) en un tubo en posición horizontal. Para este fin, la velocidad superficial del agua y el aceite se utilizaron como parámetros de entrada, entre tanto, la fracción volumétrica de estos dos fluidos se utilizaron como parámetros de salida para el entrenamiento y prueba de la red neuronal multicapa, el método utilizado fue retro propagación. Los datos experimentales (92 datos) se tomaron en el LEMI-EESC-USP y fueron utilizados para desarrollar el modelo de red neuronal artificial. Finalmente, se concluyó que los datos experimentales utilizados en la red neuronal se ajustan muy bien para una función de transferencia tagsig con 10 neuronas en la capa oculta evaluadas a partir del error porcentual absoluto medio de (AAPE= 3,95) y coeficiente de determinación ( = 0,975).","PeriodicalId":42183,"journal":{"name":"UIS Ingenierias","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Análisis experimental de flujo líquido-líquido en un tubo horizontal usando redes neuronales artificiales\",\"authors\":\"Andrey Felipe Casas-Pulido, M. M. Hernández-Cely, Oscar Mauricio Rodríguez-Hernández\",\"doi\":\"10.18273/revuin.v22n1-2023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El objetivo de este trabajo es la aplicación de una red neuronal artificial para la predicción de la fracción volumétrica (holdup) de flujo bifásico (aceite-agua) en un tubo en posición horizontal. Para este fin, la velocidad superficial del agua y el aceite se utilizaron como parámetros de entrada, entre tanto, la fracción volumétrica de estos dos fluidos se utilizaron como parámetros de salida para el entrenamiento y prueba de la red neuronal multicapa, el método utilizado fue retro propagación. Los datos experimentales (92 datos) se tomaron en el LEMI-EESC-USP y fueron utilizados para desarrollar el modelo de red neuronal artificial. Finalmente, se concluyó que los datos experimentales utilizados en la red neuronal se ajustan muy bien para una función de transferencia tagsig con 10 neuronas en la capa oculta evaluadas a partir del error porcentual absoluto medio de (AAPE= 3,95) y coeficiente de determinación ( = 0,975).\",\"PeriodicalId\":42183,\"journal\":{\"name\":\"UIS Ingenierias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UIS Ingenierias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v22n1-2023005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UIS Ingenierias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v22n1-2023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Análisis experimental de flujo líquido-líquido en un tubo horizontal usando redes neuronales artificiales
El objetivo de este trabajo es la aplicación de una red neuronal artificial para la predicción de la fracción volumétrica (holdup) de flujo bifásico (aceite-agua) en un tubo en posición horizontal. Para este fin, la velocidad superficial del agua y el aceite se utilizaron como parámetros de entrada, entre tanto, la fracción volumétrica de estos dos fluidos se utilizaron como parámetros de salida para el entrenamiento y prueba de la red neuronal multicapa, el método utilizado fue retro propagación. Los datos experimentales (92 datos) se tomaron en el LEMI-EESC-USP y fueron utilizados para desarrollar el modelo de red neuronal artificial. Finalmente, se concluyó que los datos experimentales utilizados en la red neuronal se ajustan muy bien para una función de transferencia tagsig con 10 neuronas en la capa oculta evaluadas a partir del error porcentual absoluto medio de (AAPE= 3,95) y coeficiente de determinación ( = 0,975).