评估免耕对覆盖生物动态地中海葡萄园作物产量、温室气体排放和土壤碳氮库的短期影响

IF 2.5 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY Australian Journal of Grape and Wine Research Pub Date : 2022-12-01 DOI:10.1155/2022/8100818
C. Lazcano, Noelymar Gonzalez-Maldonado, Erika H. Yao, Connie T. F. Wong, Mia Falcone, J. D. Dodson Peterson, L. F. Casassa, B. Malama, C. Decock
{"title":"评估免耕对覆盖生物动态地中海葡萄园作物产量、温室气体排放和土壤碳氮库的短期影响","authors":"C. Lazcano, Noelymar Gonzalez-Maldonado, Erika H. Yao, Connie T. F. Wong, Mia Falcone, J. D. Dodson Peterson, L. F. Casassa, B. Malama, C. Decock","doi":"10.1155/2022/8100818","DOIUrl":null,"url":null,"abstract":"Background and Aims. No-till is considered a core practice of conservation and climate-smart agriculture. Nevertheless, recent evidence suggests that the benefits of this practice for climate change mitigation might be overestimated, particularly in the short term. Methods and Results. In a three-year field experiment, we investigated the environmental and agronomic performance of this practice by looking at changes in soil physical properties, C and N pools, as well as vine yield and grape quality. No-till increased stratification in the distribution of active soil C (POXC), further accentuating the already existing difference between top and subsoil. No-till also slightly reduced the daily efflux of CO2 from the soil during the rainy season, showing that these plots were less prone to lose C than tilled plots. Nonetheless, no-till did not increase total soil C stocks. This, together with the lack of differences in cumulative N2O emissions, resulted in similar global warming potential in till and no-till plots. Vine yield and grape quality remained unchanged in the no-till compared to the tilled plots. Conclusions. Even though no-till did not result in short-term climate change mitigation, results of this study suggest changes in the ecological processes leading to C accumulation and mineralization and that may result in future C sequestration. There were no deleterious effects of no-till on grape yield and quality. Significance of the Study. This study shows that reducing tillage intensity in vineyards is a feasible strategy from an agronomic standpoint.","PeriodicalId":8582,"journal":{"name":"Australian Journal of Grape and Wine Research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing the Short-Term Effects of No-Till on Crop Yield, Greenhouse Gas Emissions, and Soil C and N Pools in a Cover-Cropped, Biodynamic Mediterranean Vineyard\",\"authors\":\"C. Lazcano, Noelymar Gonzalez-Maldonado, Erika H. Yao, Connie T. F. Wong, Mia Falcone, J. D. Dodson Peterson, L. F. Casassa, B. Malama, C. Decock\",\"doi\":\"10.1155/2022/8100818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Aims. No-till is considered a core practice of conservation and climate-smart agriculture. Nevertheless, recent evidence suggests that the benefits of this practice for climate change mitigation might be overestimated, particularly in the short term. Methods and Results. In a three-year field experiment, we investigated the environmental and agronomic performance of this practice by looking at changes in soil physical properties, C and N pools, as well as vine yield and grape quality. No-till increased stratification in the distribution of active soil C (POXC), further accentuating the already existing difference between top and subsoil. No-till also slightly reduced the daily efflux of CO2 from the soil during the rainy season, showing that these plots were less prone to lose C than tilled plots. Nonetheless, no-till did not increase total soil C stocks. This, together with the lack of differences in cumulative N2O emissions, resulted in similar global warming potential in till and no-till plots. Vine yield and grape quality remained unchanged in the no-till compared to the tilled plots. Conclusions. Even though no-till did not result in short-term climate change mitigation, results of this study suggest changes in the ecological processes leading to C accumulation and mineralization and that may result in future C sequestration. There were no deleterious effects of no-till on grape yield and quality. Significance of the Study. This study shows that reducing tillage intensity in vineyards is a feasible strategy from an agronomic standpoint.\",\"PeriodicalId\":8582,\"journal\":{\"name\":\"Australian Journal of Grape and Wine Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Grape and Wine Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8100818\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Grape and Wine Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1155/2022/8100818","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

背景和目的。免耕被认为是保护和气候智能农业的核心实践。然而,最近的证据表明,这种做法对缓解气候变化的好处可能被高估了,特别是在短期内。方法和结果。在一项为期三年的田间试验中,我们通过观察土壤物理特性、碳氮库以及葡萄产量和葡萄质量的变化,研究了这种做法的环境和农艺性能。免耕增加了活性土壤C(POXC)分布的分层,进一步加剧了表层和底土之间已经存在的差异。在雨季,免耕也略微减少了土壤中二氧化碳的日排放量,这表明这些地块比耕作地块更不容易失去碳。尽管如此,免耕并没有增加土壤总碳储量。这一点,加上累积N2O排放量没有差异,导致了免耕地和免耕地类似的全球变暖潜力。与耕地相比,免耕区的葡萄产量和葡萄质量保持不变。结论。尽管免耕并没有导致短期的气候变化缓解,但这项研究的结果表明,导致碳积累和矿化的生态过程发生了变化,这可能会导致未来的碳封存。免耕对葡萄产量和品质没有任何有害影响。研究的意义。这项研究表明,从农学的角度来看,降低葡萄园的耕作强度是一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the Short-Term Effects of No-Till on Crop Yield, Greenhouse Gas Emissions, and Soil C and N Pools in a Cover-Cropped, Biodynamic Mediterranean Vineyard
Background and Aims. No-till is considered a core practice of conservation and climate-smart agriculture. Nevertheless, recent evidence suggests that the benefits of this practice for climate change mitigation might be overestimated, particularly in the short term. Methods and Results. In a three-year field experiment, we investigated the environmental and agronomic performance of this practice by looking at changes in soil physical properties, C and N pools, as well as vine yield and grape quality. No-till increased stratification in the distribution of active soil C (POXC), further accentuating the already existing difference between top and subsoil. No-till also slightly reduced the daily efflux of CO2 from the soil during the rainy season, showing that these plots were less prone to lose C than tilled plots. Nonetheless, no-till did not increase total soil C stocks. This, together with the lack of differences in cumulative N2O emissions, resulted in similar global warming potential in till and no-till plots. Vine yield and grape quality remained unchanged in the no-till compared to the tilled plots. Conclusions. Even though no-till did not result in short-term climate change mitigation, results of this study suggest changes in the ecological processes leading to C accumulation and mineralization and that may result in future C sequestration. There were no deleterious effects of no-till on grape yield and quality. Significance of the Study. This study shows that reducing tillage intensity in vineyards is a feasible strategy from an agronomic standpoint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
7.10%
发文量
35
审稿时长
3 months
期刊介绍: The Australian Journal of Grape and Wine Research provides a forum for the exchange of information about new and significant research in viticulture, oenology and related fields, and aims to promote these disciplines throughout the world. The Journal publishes results from original research in all areas of viticulture and oenology. This includes issues relating to wine, table and drying grape production; grapevine and rootstock biology, genetics, diseases and improvement; viticultural practices; juice and wine production technologies; vine and wine microbiology; quality effects of processing, packaging and inputs; wine chemistry; sensory science and consumer preferences; and environmental impacts of grape and wine production. Research related to other fermented or distilled beverages may also be considered. In addition to full-length research papers and review articles, short research or technical papers presenting new and highly topical information derived from a complete study (i.e. not preliminary data) may also be published. Special features and supplementary issues comprising the proceedings of workshops and conferences will appear periodically.
期刊最新文献
The Wine Quality of Merlot Relies in Irrigation Supplementation and Spotlights Sustainable Production Constraints in Mediterranean-Type Ecosystems Respectful Pruning Improves Grapevine Development: A Case Study in Young Vineyards Ability of Different Flavonols and Commercial Mannoproteins to Enhance Wine Colour through Copigmentation The Influences of Rootstock on the Performance of Pinot Noir (Vitis vinifera L.): Berry and Wine Composition A Comparative Study on the Modification of Polyphenolic, Volatile, and Sensory Profiles of Merlot Wine by Indigenous Lactiplantibacillus plantarum and Oenococcus oeni
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1