植物中的角鲨烯合酶——功能复杂性和进化差异,同时保留核心催化结构

IF 2.2 Q3 GENETICS & HEREDITY Plant Gene Pub Date : 2023-03-01 DOI:10.1016/j.plgene.2023.100403
Anjan Hazra, Madhurima Dutta, Rajashree Dutta, Ekta Bhattacharya, Rahul Bose, Suparna Mandal Biswas
{"title":"植物中的角鲨烯合酶——功能复杂性和进化差异,同时保留核心催化结构","authors":"Anjan Hazra,&nbsp;Madhurima Dutta,&nbsp;Rajashree Dutta,&nbsp;Ekta Bhattacharya,&nbsp;Rahul Bose,&nbsp;Suparna Mandal Biswas","doi":"10.1016/j.plgene.2023.100403","DOIUrl":null,"url":null,"abstract":"<div><p>Squalene is the crucial intermediate for the biosynthesis of many bioactive triterpenoids, such as phytosterol in plants or cholesterol in animals. Squalene synthase (SQS) is the essential gene of the squalene biosynthetic pathway, which catalyzes the head-to-head condensation of two farnesyl pyrophosphate or farnesyl diphosphate (FPP) molecules in a two-step reaction and formation of linear C<sub>30</sub> squalene. SQS ubiquitously occurs in all eukaryotic organisms. However, the activity of this gene varies significantly, leading to diverse squalene content in plants. The present study focused on the variation in the expression landscape of SQS gene copies with varying evolutionary backgrounds. Afterward, a reflection of the sequence divergence on the catalytic structure of the protein was examined. The genome-scale mining of the SQS homologs revealed varying degrees of duplication events, sequence evolution of the gene sequence itself, and the adjoining regulatory architecture. Contrasting expressional patterns and the regulatory modules pinpoint the importance of transcriptional regulation of this essential gene. Three-dimensional organizations of SQS from diverse evolutionary taxa and their consensus structures enlightened the conservation of critical catalytic domains, nonetheless divergence in the majority of the protein. As a whole, the outputs of this study provide some valuable insights for understanding the functional regulation of SQS under different tissues and environments.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Squalene synthase in plants – Functional intricacy and evolutionary divergence while retaining a core catalytic structure\",\"authors\":\"Anjan Hazra,&nbsp;Madhurima Dutta,&nbsp;Rajashree Dutta,&nbsp;Ekta Bhattacharya,&nbsp;Rahul Bose,&nbsp;Suparna Mandal Biswas\",\"doi\":\"10.1016/j.plgene.2023.100403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Squalene is the crucial intermediate for the biosynthesis of many bioactive triterpenoids, such as phytosterol in plants or cholesterol in animals. Squalene synthase (SQS) is the essential gene of the squalene biosynthetic pathway, which catalyzes the head-to-head condensation of two farnesyl pyrophosphate or farnesyl diphosphate (FPP) molecules in a two-step reaction and formation of linear C<sub>30</sub> squalene. SQS ubiquitously occurs in all eukaryotic organisms. However, the activity of this gene varies significantly, leading to diverse squalene content in plants. The present study focused on the variation in the expression landscape of SQS gene copies with varying evolutionary backgrounds. Afterward, a reflection of the sequence divergence on the catalytic structure of the protein was examined. The genome-scale mining of the SQS homologs revealed varying degrees of duplication events, sequence evolution of the gene sequence itself, and the adjoining regulatory architecture. Contrasting expressional patterns and the regulatory modules pinpoint the importance of transcriptional regulation of this essential gene. Three-dimensional organizations of SQS from diverse evolutionary taxa and their consensus structures enlightened the conservation of critical catalytic domains, nonetheless divergence in the majority of the protein. As a whole, the outputs of this study provide some valuable insights for understanding the functional regulation of SQS under different tissues and environments.</p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235240732300001X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235240732300001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

角鲨烯是许多生物活性三萜类化合物生物合成的关键中间体,如植物中的植物甾醇或动物中的胆固醇。角鲨烯合成酶(SQS)是角鲨烯生物合成途径的必需基因,它催化两个法尼焦磷酸或法尼二磷酸(FPP)分子在两步反应中的头对头缩合并形成线性C30角鲨烯。SQS普遍存在于所有真核生物中。然而,该基因的活性差异很大,导致植物中角鲨烯含量不同。本研究的重点是不同进化背景下SQS基因拷贝表达格局的变化。随后,检测了序列差异对蛋白质催化结构的反映。SQS同源物的基因组规模挖掘揭示了不同程度的重复事件、基因序列本身的序列进化以及相邻的调控结构。通过对比表达模式和调控模块,明确了转录调控这一重要基因的重要性。来自不同进化分类群的SQS的三维组织及其一致结构揭示了关键催化结构域的保守性,尽管如此,在大多数蛋白质中存在差异。总的来说,本研究的成果为理解不同组织和环境下SQS的功能调节提供了一些有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Squalene synthase in plants – Functional intricacy and evolutionary divergence while retaining a core catalytic structure

Squalene is the crucial intermediate for the biosynthesis of many bioactive triterpenoids, such as phytosterol in plants or cholesterol in animals. Squalene synthase (SQS) is the essential gene of the squalene biosynthetic pathway, which catalyzes the head-to-head condensation of two farnesyl pyrophosphate or farnesyl diphosphate (FPP) molecules in a two-step reaction and formation of linear C30 squalene. SQS ubiquitously occurs in all eukaryotic organisms. However, the activity of this gene varies significantly, leading to diverse squalene content in plants. The present study focused on the variation in the expression landscape of SQS gene copies with varying evolutionary backgrounds. Afterward, a reflection of the sequence divergence on the catalytic structure of the protein was examined. The genome-scale mining of the SQS homologs revealed varying degrees of duplication events, sequence evolution of the gene sequence itself, and the adjoining regulatory architecture. Contrasting expressional patterns and the regulatory modules pinpoint the importance of transcriptional regulation of this essential gene. Three-dimensional organizations of SQS from diverse evolutionary taxa and their consensus structures enlightened the conservation of critical catalytic domains, nonetheless divergence in the majority of the protein. As a whole, the outputs of this study provide some valuable insights for understanding the functional regulation of SQS under different tissues and environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
期刊最新文献
Genome-wide identification and expression analysis of genes encoding late embryogenesis proteins in Cicer arietinum Genome-wide identification of clock-associated genes and circadian rhythms in Fragaria × ananassa seedlings Transcriptome analysis of inflorescence embryogenesis in Festuca Glauca Advances in genome editing and future prospects for Sorghum improvement: A review Molecular markers that make energy cane differ from sugarcane cultivars (Saccharum spp.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1