检测心律失常的1D神经网络设计

Juan Camilo Sandoval-Cabrera, Nohora Camila Sarmiento-Palma, Rubén Dario Hernández-Beleño
{"title":"检测心律失常的1D神经网络设计","authors":"Juan Camilo Sandoval-Cabrera, Nohora Camila Sarmiento-Palma, Rubén Dario Hernández-Beleño","doi":"10.14483/22484728.17430","DOIUrl":null,"url":null,"abstract":"This article shows a neuronal network for deep learning focused on recognizing and classification five types of cardiac signals (Sinus, Ventricular Tachycardia, Ventricular Fibrillation, Atrial Flutter, and Atrial Fibrillation). The final objective is to obtain an architecture that can be implemented in an embedded system as a pre-diagnostic device linked to a Holter monitoring system. The network was designed using the Keras API programmed in Python, where it is possible to obtain a comparison of different types of networks that vary the presence of a residual block, with the result that the network with said block obtains the best response (100% success rate) and a model loss of approximately 0.15%. On the other hand, a validation by means of confusion matrices was carried out to verify the existence of false positives in the network results and evidence what type of arrhythmia can be presented according to the network output against an input signal through the console.","PeriodicalId":34191,"journal":{"name":"Vision Electronica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D neural network design to detect cardiac arrhythmias\",\"authors\":\"Juan Camilo Sandoval-Cabrera, Nohora Camila Sarmiento-Palma, Rubén Dario Hernández-Beleño\",\"doi\":\"10.14483/22484728.17430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article shows a neuronal network for deep learning focused on recognizing and classification five types of cardiac signals (Sinus, Ventricular Tachycardia, Ventricular Fibrillation, Atrial Flutter, and Atrial Fibrillation). The final objective is to obtain an architecture that can be implemented in an embedded system as a pre-diagnostic device linked to a Holter monitoring system. The network was designed using the Keras API programmed in Python, where it is possible to obtain a comparison of different types of networks that vary the presence of a residual block, with the result that the network with said block obtains the best response (100% success rate) and a model loss of approximately 0.15%. On the other hand, a validation by means of confusion matrices was carried out to verify the existence of false positives in the network results and evidence what type of arrhythmia can be presented according to the network output against an input signal through the console.\",\"PeriodicalId\":34191,\"journal\":{\"name\":\"Vision Electronica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Electronica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14483/22484728.17430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Electronica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/22484728.17430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一个用于深度学习的神经元网络,专注于识别和分类五种类型的心脏信号(窦性心动过速、心室颤动、心房扑动和心房颤动)。最终目标是获得一种可以在嵌入式系统中实现的架构,作为连接到Holter监测系统的预诊断设备。该网络是使用Python编程的Keras API设计的,其中可以获得不同类型的网络的比较,这些网络改变了残差块的存在,结果是具有所述块的网络获得了最佳响应(100%成功率)和大约0.15%的模型损失。另一方面,通过混淆矩阵进行验证,以验证网络结果中是否存在假阳性,并证明根据网络输出相对于通过控制台的输入信号可以呈现什么类型的心律失常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1D neural network design to detect cardiac arrhythmias
This article shows a neuronal network for deep learning focused on recognizing and classification five types of cardiac signals (Sinus, Ventricular Tachycardia, Ventricular Fibrillation, Atrial Flutter, and Atrial Fibrillation). The final objective is to obtain an architecture that can be implemented in an embedded system as a pre-diagnostic device linked to a Holter monitoring system. The network was designed using the Keras API programmed in Python, where it is possible to obtain a comparison of different types of networks that vary the presence of a residual block, with the result that the network with said block obtains the best response (100% success rate) and a model loss of approximately 0.15%. On the other hand, a validation by means of confusion matrices was carried out to verify the existence of false positives in the network results and evidence what type of arrhythmia can be presented according to the network output against an input signal through the console.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Perspectives in nanoscience and nanotechnology Interpretaciones del método de Descartes en didáctica del álgebra. Estudio documental Modelo predictivo de gestión del riesgo en el curso de cálculo integral del Programa Ingeniería Industrial para la Universidad El Bosque en el proceso de la deserción estudiantil Una mirada a la estrategia didáctica a partir de los componentes estructurantes, en la práctica de enseñanza de una profesora de preescolar Laboratorios virtuales y remotos en electrónica y telecomunicaciones: una revisión técnica en educación
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1