共同生活的好处——研究海洋共生体,发现用于生物技术应用的酶

Q4 Biochemistry, Genetics and Molecular Biology Biochemist Pub Date : 2022-02-24 DOI:10.1042/bio_2022_102
M. Jaspars
{"title":"共同生活的好处——研究海洋共生体,发现用于生物技术应用的酶","authors":"M. Jaspars","doi":"10.1042/bio_2022_102","DOIUrl":null,"url":null,"abstract":"Over the past 50 years, more than 15 pharmaceuticals derived from marine organisms have come to the market. Most of these come from filter-feeding invertebrates that contain a high proportion of microbial symbionts. Microbiology and molecular genetic studies have shown that many of these drug-like compounds are produced by the microbial symbiont. The enzymes that produce these compounds are promiscuous meaning they can process a diverse range of related substrates, making them extremely attractive to the biotechnology industry. Determining the structure of these enzymes makes them amenable to engineering, allowing them to process non-natural substrates. Using this approach, synthetic substrates can be treated with a cocktail of enzymes to prepare focused libraries of compounds to hit drug targets such as protein–protein interactions. These targets are involved in a range of diseases from cancer to immune disorders and are hard to modulate using small molecule drugs. Complex modified cyclic peptides produced using a chemoenzymatic process may be a promising approach to address these disease conditions.","PeriodicalId":35334,"journal":{"name":"Biochemist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The benefits of living together – studying marine symbioses to discover enzymes for biotechnology applications\",\"authors\":\"M. Jaspars\",\"doi\":\"10.1042/bio_2022_102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past 50 years, more than 15 pharmaceuticals derived from marine organisms have come to the market. Most of these come from filter-feeding invertebrates that contain a high proportion of microbial symbionts. Microbiology and molecular genetic studies have shown that many of these drug-like compounds are produced by the microbial symbiont. The enzymes that produce these compounds are promiscuous meaning they can process a diverse range of related substrates, making them extremely attractive to the biotechnology industry. Determining the structure of these enzymes makes them amenable to engineering, allowing them to process non-natural substrates. Using this approach, synthetic substrates can be treated with a cocktail of enzymes to prepare focused libraries of compounds to hit drug targets such as protein–protein interactions. These targets are involved in a range of diseases from cancer to immune disorders and are hard to modulate using small molecule drugs. Complex modified cyclic peptides produced using a chemoenzymatic process may be a promising approach to address these disease conditions.\",\"PeriodicalId\":35334,\"journal\":{\"name\":\"Biochemist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/bio_2022_102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/bio_2022_102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

在过去的50年里,已有超过15种源自海洋生物的药物进入市场。其中大多数来自滤食性无脊椎动物,这些无脊椎动物含有高比例的微生物共生体。微生物学和分子遗传学研究表明,这些类药物化合物中的许多是由微生物共生体产生的。产生这些化合物的酶是混杂的,这意味着它们可以处理各种各样的相关底物,这使它们对生物技术行业极具吸引力。确定这些酶的结构使它们适合工程,使它们能够处理非天然底物。使用这种方法,合成底物可以用酶混合物处理,以制备集中的化合物文库,从而达到药物靶点,如蛋白质-蛋白质相互作用。这些靶点涉及从癌症到免疫疾病的一系列疾病,很难使用小分子药物进行调节。使用化学酶法生产的复杂修饰的环肽可能是解决这些疾病条件的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The benefits of living together – studying marine symbioses to discover enzymes for biotechnology applications
Over the past 50 years, more than 15 pharmaceuticals derived from marine organisms have come to the market. Most of these come from filter-feeding invertebrates that contain a high proportion of microbial symbionts. Microbiology and molecular genetic studies have shown that many of these drug-like compounds are produced by the microbial symbiont. The enzymes that produce these compounds are promiscuous meaning they can process a diverse range of related substrates, making them extremely attractive to the biotechnology industry. Determining the structure of these enzymes makes them amenable to engineering, allowing them to process non-natural substrates. Using this approach, synthetic substrates can be treated with a cocktail of enzymes to prepare focused libraries of compounds to hit drug targets such as protein–protein interactions. These targets are involved in a range of diseases from cancer to immune disorders and are hard to modulate using small molecule drugs. Complex modified cyclic peptides produced using a chemoenzymatic process may be a promising approach to address these disease conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemist
Biochemist Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.20
自引率
0.00%
发文量
41
期刊介绍: This lively and eclectic magazine for all life scientists appears six times a year. Its quirky style and astute selection of serious and humorous articles ensures that the magazine"s appeal is by no means restricted to that of the avid biochemist. Specially commissioned articles from leading scientists bring a popular science perspective direct to you! Forthcoming themes include: RNAi, Money in Science, Extremophiles, Biosystems and Mathematical Modelling, Renascence of Mitochondria, Prions & Protein factors, Imaging live cells and Model organisms.
期刊最新文献
“Out, Damned Spot”: The art and science of forensic restoration A beginner’s guide to supervising a PhD researcher Death and decomposition Do you know what happens to you after you die? Empowering students with hearing impairment to pursue science careers in Kaduna State, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1