M. Sunusi, Asadullah Khan, Y. Tsago, Ziyan Chen, C. Shi, Xiaoli Jin
{"title":"水稻粒长和品质调控基因bgl的遗传分析和基因定位","authors":"M. Sunusi, Asadullah Khan, Y. Tsago, Ziyan Chen, C. Shi, Xiaoli Jin","doi":"10.31742/ijgpb.82.1.3","DOIUrl":null,"url":null,"abstract":"Grain size is one of the important agronomic traits that determine rice yield. Map-based cloning of rice grain size-related genes impacts the genetic regulation mechanism of rice yield formation. Here we identified bgl mutant in rice which exhibits increase in grain length and panicle length with the decrease in number of grains per panicle and no observable difference in grain thickness and number of tillers as compared to the wild type (WT). Scanning electron microscopy observation of bgl mutant spikelets hull indicates an upsurge in number of external epidermal cells in a longitudinal way than the WT. Hence, it is likely that the long-grain phenotype was due to increased cell number longitudinally. Starch granule in both bgl and WT were large, sporadically polyhedral and densely packed, indicating no differences, signifying that both bgl mutant and WT have less chalkiness content. Genetic analysis showed that the bgl mutant was controlled by a recessive single gene, and was finely located on chromosome 3 through map-based cloning, within a physical distance of 40kb. Sequencing analysis revealed A to T substitution in the seventeen exons of LOC_Os03g44500 resulted in an amino acid change from Tryptophan (Try) to Phenylalanine (Phe). Taken together bgl mutant has a pleiotropic effect on grain yield and grain quality.","PeriodicalId":13321,"journal":{"name":"Indian Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic analysis and gene mapping of bgl, a gene controlling grain length and quality in rice\",\"authors\":\"M. Sunusi, Asadullah Khan, Y. Tsago, Ziyan Chen, C. Shi, Xiaoli Jin\",\"doi\":\"10.31742/ijgpb.82.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grain size is one of the important agronomic traits that determine rice yield. Map-based cloning of rice grain size-related genes impacts the genetic regulation mechanism of rice yield formation. Here we identified bgl mutant in rice which exhibits increase in grain length and panicle length with the decrease in number of grains per panicle and no observable difference in grain thickness and number of tillers as compared to the wild type (WT). Scanning electron microscopy observation of bgl mutant spikelets hull indicates an upsurge in number of external epidermal cells in a longitudinal way than the WT. Hence, it is likely that the long-grain phenotype was due to increased cell number longitudinally. Starch granule in both bgl and WT were large, sporadically polyhedral and densely packed, indicating no differences, signifying that both bgl mutant and WT have less chalkiness content. Genetic analysis showed that the bgl mutant was controlled by a recessive single gene, and was finely located on chromosome 3 through map-based cloning, within a physical distance of 40kb. Sequencing analysis revealed A to T substitution in the seventeen exons of LOC_Os03g44500 resulted in an amino acid change from Tryptophan (Try) to Phenylalanine (Phe). Taken together bgl mutant has a pleiotropic effect on grain yield and grain quality.\",\"PeriodicalId\":13321,\"journal\":{\"name\":\"Indian Journal of Genetics and Plant Breeding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Genetics and Plant Breeding\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.31742/ijgpb.82.1.3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Genetics and Plant Breeding","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.31742/ijgpb.82.1.3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genetic analysis and gene mapping of bgl, a gene controlling grain length and quality in rice
Grain size is one of the important agronomic traits that determine rice yield. Map-based cloning of rice grain size-related genes impacts the genetic regulation mechanism of rice yield formation. Here we identified bgl mutant in rice which exhibits increase in grain length and panicle length with the decrease in number of grains per panicle and no observable difference in grain thickness and number of tillers as compared to the wild type (WT). Scanning electron microscopy observation of bgl mutant spikelets hull indicates an upsurge in number of external epidermal cells in a longitudinal way than the WT. Hence, it is likely that the long-grain phenotype was due to increased cell number longitudinally. Starch granule in both bgl and WT were large, sporadically polyhedral and densely packed, indicating no differences, signifying that both bgl mutant and WT have less chalkiness content. Genetic analysis showed that the bgl mutant was controlled by a recessive single gene, and was finely located on chromosome 3 through map-based cloning, within a physical distance of 40kb. Sequencing analysis revealed A to T substitution in the seventeen exons of LOC_Os03g44500 resulted in an amino acid change from Tryptophan (Try) to Phenylalanine (Phe). Taken together bgl mutant has a pleiotropic effect on grain yield and grain quality.
期刊介绍:
Advance the cause of genetics and plant breeding and to encourage and promote study and research in these disciplines in the service of agriculture; to disseminate the knowledge of genetics and plant breeding; provide facilities for association and conference among students of genetics and plant breeding and for encouragement of close relationship between them and those in the related sciences; advocate policies in the interest of the nation in the field of genetics and plant breeding, and facilitate international cooperation in the field of genetics and plant breeding.