{"title":"双组分玻色-爱因斯坦凝聚体中模拟自旋遍历区的超辐射声子发射","authors":"Annalisa Berti, Luca Giacomelli, I. Carusotto","doi":"10.5802/crphys.145","DOIUrl":null,"url":null,"abstract":"We make use of an analog gravity perspective to obtain a physical understanding of hydrodynamic instabilities stemming from the presence of quantized vortices in two-component atomic condensates and of their relation to ergoregion instabilities of rotating massive objects in gravitation. In addition to the localized instabilities related to vortex splitting, configurations displaying dynamically unstable modes that extend well outside the vortex core are found. In this case, the superradiant scattering process involves phonon emission into the much wider ergoregion of spin modes, so the physics most closely resembles the one of rotating massive objects. Our results confirm the potential of two-component condensates as analog models of rotating space-times in different regimes of gravitational interest.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Superradiant phononic emission from the analog spin ergoregion in a two-component Bose–Einstein condensate\",\"authors\":\"Annalisa Berti, Luca Giacomelli, I. Carusotto\",\"doi\":\"10.5802/crphys.145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We make use of an analog gravity perspective to obtain a physical understanding of hydrodynamic instabilities stemming from the presence of quantized vortices in two-component atomic condensates and of their relation to ergoregion instabilities of rotating massive objects in gravitation. In addition to the localized instabilities related to vortex splitting, configurations displaying dynamically unstable modes that extend well outside the vortex core are found. In this case, the superradiant scattering process involves phonon emission into the much wider ergoregion of spin modes, so the physics most closely resembles the one of rotating massive objects. Our results confirm the potential of two-component condensates as analog models of rotating space-times in different regimes of gravitational interest.\",\"PeriodicalId\":50650,\"journal\":{\"name\":\"Comptes Rendus Physique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Physique\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5802/crphys.145\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.145","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Superradiant phononic emission from the analog spin ergoregion in a two-component Bose–Einstein condensate
We make use of an analog gravity perspective to obtain a physical understanding of hydrodynamic instabilities stemming from the presence of quantized vortices in two-component atomic condensates and of their relation to ergoregion instabilities of rotating massive objects in gravitation. In addition to the localized instabilities related to vortex splitting, configurations displaying dynamically unstable modes that extend well outside the vortex core are found. In this case, the superradiant scattering process involves phonon emission into the much wider ergoregion of spin modes, so the physics most closely resembles the one of rotating massive objects. Our results confirm the potential of two-component condensates as analog models of rotating space-times in different regimes of gravitational interest.
期刊介绍:
The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity.
From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication.
The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.