{"title":"在机械载荷下,通过纤维排列和分子间交联快速制备肌腱样胶原凝胶","authors":"Eijiro Maeda, Ryota Kawamura, Takashi Suzuki, Takeo Matsumoto","doi":"10.1088/1748-605X/ac7305","DOIUrl":null,"url":null,"abstract":"Artificial tissue replacement is a promising strategy for better healing outcomes for tendon and ligament injuries, due to the very limited self-regeneration capacity of these tissues in mammals, including humans. Because clinically available synthetic and biological scaffolds for tendon repair have performed more poorly than autografts, both biological and mechanical compatibility need to be improved. Here we propose a rapid fabrication method for tendon-like structure from collagen hydrogel, simultaneously achieving collagen fibre alignment and intermolecular cross-linking. Collagen gel, 24 h after polymerization, was subjected to mechanical loading in the presence of the chemical cross-linker, genipin, for 24 or 48 h. Mechanical loading during gel incubation oriented collagen fibres in the loading direction and made chemical cross-linking highly effective in a loading magnitude-dependent manner. Gel incubated with 4 g loading in the presence of genipin for 48 h possessed tensile strength of 4 MPa and tangent modulus of 60 MPa, respectively, which could fulfill the minimum biomechanical requirement for artificial tendon. Although mechanical properties of gels fabricated using the present method can be improved by using a larger amount of collagen in the starting material and through optimisation of mechanical loading and cross-linking, the method is a simple and effective for producing highly aligned collagen fibrils with excellent mechanical properties.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rapid fabrication of tendon-like collagen gel via simultaneous fibre alignment and intermolecular cross-linking under mechanical loading\",\"authors\":\"Eijiro Maeda, Ryota Kawamura, Takashi Suzuki, Takeo Matsumoto\",\"doi\":\"10.1088/1748-605X/ac7305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial tissue replacement is a promising strategy for better healing outcomes for tendon and ligament injuries, due to the very limited self-regeneration capacity of these tissues in mammals, including humans. Because clinically available synthetic and biological scaffolds for tendon repair have performed more poorly than autografts, both biological and mechanical compatibility need to be improved. Here we propose a rapid fabrication method for tendon-like structure from collagen hydrogel, simultaneously achieving collagen fibre alignment and intermolecular cross-linking. Collagen gel, 24 h after polymerization, was subjected to mechanical loading in the presence of the chemical cross-linker, genipin, for 24 or 48 h. Mechanical loading during gel incubation oriented collagen fibres in the loading direction and made chemical cross-linking highly effective in a loading magnitude-dependent manner. Gel incubated with 4 g loading in the presence of genipin for 48 h possessed tensile strength of 4 MPa and tangent modulus of 60 MPa, respectively, which could fulfill the minimum biomechanical requirement for artificial tendon. Although mechanical properties of gels fabricated using the present method can be improved by using a larger amount of collagen in the starting material and through optimisation of mechanical loading and cross-linking, the method is a simple and effective for producing highly aligned collagen fibrils with excellent mechanical properties.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ac7305\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac7305","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Rapid fabrication of tendon-like collagen gel via simultaneous fibre alignment and intermolecular cross-linking under mechanical loading
Artificial tissue replacement is a promising strategy for better healing outcomes for tendon and ligament injuries, due to the very limited self-regeneration capacity of these tissues in mammals, including humans. Because clinically available synthetic and biological scaffolds for tendon repair have performed more poorly than autografts, both biological and mechanical compatibility need to be improved. Here we propose a rapid fabrication method for tendon-like structure from collagen hydrogel, simultaneously achieving collagen fibre alignment and intermolecular cross-linking. Collagen gel, 24 h after polymerization, was subjected to mechanical loading in the presence of the chemical cross-linker, genipin, for 24 or 48 h. Mechanical loading during gel incubation oriented collagen fibres in the loading direction and made chemical cross-linking highly effective in a loading magnitude-dependent manner. Gel incubated with 4 g loading in the presence of genipin for 48 h possessed tensile strength of 4 MPa and tangent modulus of 60 MPa, respectively, which could fulfill the minimum biomechanical requirement for artificial tendon. Although mechanical properties of gels fabricated using the present method can be improved by using a larger amount of collagen in the starting material and through optimisation of mechanical loading and cross-linking, the method is a simple and effective for producing highly aligned collagen fibrils with excellent mechanical properties.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters