首次视觉体验后成年大鼠视觉通路的广泛地形重映射和功能锐化

IF 7.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY PLoS Biology Pub Date : 2023-07-21 DOI:10.1101/2022.06.20.496863
J. Carvalho, Francisca F. Fernandes, N. Shemesh
{"title":"首次视觉体验后成年大鼠视觉通路的广泛地形重映射和功能锐化","authors":"J. Carvalho, Francisca F. Fernandes, N. Shemesh","doi":"10.1101/2022.06.20.496863","DOIUrl":null,"url":null,"abstract":"Understanding the dynamics of stability/plasticity balances during adulthood is pivotal for learning, disease, and recovery from injury. However, the brain-wide topography of sensory remapping remains unknown. Here, using a first-of-its-kind setup for delivering patterned visual stimuli in a rodent Magnetic Resonance Imaging (MRI) scanner, coupled with biologically-inspired computational models, we noninvasively mapped brain-wide properties - receptive fields (RFs) and spatial frequency (SF) tuning curves - that were insofar only available from invasive electrophysiology or optical imaging. We then tracked the RF dynamics in the chronic Visual Deprivation Model (VDM) of plasticity, and found that light exposure progressively promoted a large-scale topographic remapping in adult rats. Upon light exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs (smaller and more spatially selective) and enhanced spatial frequency tuning curves. Our findings reveal that visual experience following VDM reshapes both structure and function of the visual system and shifts the stability/plasticity balance in adults.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensive topographic remapping and functional sharpening in the adult rat visual pathway upon first visual experience\",\"authors\":\"J. Carvalho, Francisca F. Fernandes, N. Shemesh\",\"doi\":\"10.1101/2022.06.20.496863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the dynamics of stability/plasticity balances during adulthood is pivotal for learning, disease, and recovery from injury. However, the brain-wide topography of sensory remapping remains unknown. Here, using a first-of-its-kind setup for delivering patterned visual stimuli in a rodent Magnetic Resonance Imaging (MRI) scanner, coupled with biologically-inspired computational models, we noninvasively mapped brain-wide properties - receptive fields (RFs) and spatial frequency (SF) tuning curves - that were insofar only available from invasive electrophysiology or optical imaging. We then tracked the RF dynamics in the chronic Visual Deprivation Model (VDM) of plasticity, and found that light exposure progressively promoted a large-scale topographic remapping in adult rats. Upon light exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs (smaller and more spatially selective) and enhanced spatial frequency tuning curves. Our findings reveal that visual experience following VDM reshapes both structure and function of the visual system and shifts the stability/plasticity balance in adults.\",\"PeriodicalId\":20240,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/2022.06.20.496863\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/2022.06.20.496863","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解成年期稳定性/可塑性平衡的动态对学习、疾病和损伤恢复至关重要。然而,感觉重新映射的全脑地形仍然未知。在这里,使用一种首创的装置,在啮齿动物磁共振成像(MRI)扫描仪中传递图案视觉刺激,再加上生物启发的计算模型,我们无创性地绘制了全脑特性——感受野(RFs)和空间频率(SF)调谐曲线——迄今为止只能从侵入性电生理学或光学成像中获得。随后,我们追踪了慢性视觉剥夺模型(VDM)可塑性的RF动态,发现光照逐渐促进成年大鼠的大规模地形重新映射。在光照射下,最初的非特化视觉通路逐渐证明锐化的rf(更小,更具空间选择性)和增强的空间频率调谐曲线。我们的研究结果表明,VDM后的视觉体验重塑了成人视觉系统的结构和功能,并改变了稳定性/可塑性平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extensive topographic remapping and functional sharpening in the adult rat visual pathway upon first visual experience
Understanding the dynamics of stability/plasticity balances during adulthood is pivotal for learning, disease, and recovery from injury. However, the brain-wide topography of sensory remapping remains unknown. Here, using a first-of-its-kind setup for delivering patterned visual stimuli in a rodent Magnetic Resonance Imaging (MRI) scanner, coupled with biologically-inspired computational models, we noninvasively mapped brain-wide properties - receptive fields (RFs) and spatial frequency (SF) tuning curves - that were insofar only available from invasive electrophysiology or optical imaging. We then tracked the RF dynamics in the chronic Visual Deprivation Model (VDM) of plasticity, and found that light exposure progressively promoted a large-scale topographic remapping in adult rats. Upon light exposure, the initially unspecialized visual pathway progressively evidenced sharpened RFs (smaller and more spatially selective) and enhanced spatial frequency tuning curves. Our findings reveal that visual experience following VDM reshapes both structure and function of the visual system and shifts the stability/plasticity balance in adults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology 生物-生化与分子生物学
CiteScore
14.40
自引率
2.00%
发文量
359
审稿时长
3 months
期刊介绍: PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly. ISSN Numbers: eISSN: 1545-7885 ISSN: 1544-9173
期刊最新文献
Functional network modules overlap and are linked to interindividual connectome differences during human brain development Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion Organelle landscape analysis using a multiparametric particle-based method Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1