非均匀超表面集成圆极化端火偶极子阵列天线

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-03-31 DOI:10.26866/jees.2023.2.r.150
Cho Hilary Scott Nkimbeng, Heesu Wang, G. Byun, Y. Park, I. Park
{"title":"非均匀超表面集成圆极化端火偶极子阵列天线","authors":"Cho Hilary Scott Nkimbeng, Heesu Wang, G. Byun, Y. Park, I. Park","doi":"10.26866/jees.2023.2.r.150","DOIUrl":null,"url":null,"abstract":"This paper presents a high-gain wideband circularly polarized antenna composed of an end-fire dipole array antenna integrated with a metasurface. The antenna consists of a two-layer cascaded non-uniform metasurface made up of 4 × 4 circular patches with cross-slots of unequal lengths placed above an end-fire dipole array antenna with an air gap between the structures. The end-fire dipole array antenna comprises four equally spaced dipole elements, and each dipole is connected to a parallel stripline printed on the front and back sides of the substrate. The metasurface, which is made up of a circular patch with 2 × 2 center patches that have a different radius than the outer patches, and the cross-slots of unequal lengths are used for the polarization conversion of a linearly polarized wave to a circularly polarized wave. The measured reflection coefficients for |S11| < -10 dB yielded an impedance bandwidth of 25.6–31.8 GHz (21.5%), a 3-dB axial ratio (AR) bandwidth of 26.1–30.5 GHz (15.5%), a 3-dB gain bandwidth of 26.0–31.1 GHz (17.4%) with a peak gain of 11.0 dBic, and a radiation efficiency of more than 80% in the axial ratio bandwidth.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Uniform Metasurface-Integrated Circularly Polarized End-Fire Dipole Array Antenna\",\"authors\":\"Cho Hilary Scott Nkimbeng, Heesu Wang, G. Byun, Y. Park, I. Park\",\"doi\":\"10.26866/jees.2023.2.r.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-gain wideband circularly polarized antenna composed of an end-fire dipole array antenna integrated with a metasurface. The antenna consists of a two-layer cascaded non-uniform metasurface made up of 4 × 4 circular patches with cross-slots of unequal lengths placed above an end-fire dipole array antenna with an air gap between the structures. The end-fire dipole array antenna comprises four equally spaced dipole elements, and each dipole is connected to a parallel stripline printed on the front and back sides of the substrate. The metasurface, which is made up of a circular patch with 2 × 2 center patches that have a different radius than the outer patches, and the cross-slots of unequal lengths are used for the polarization conversion of a linearly polarized wave to a circularly polarized wave. The measured reflection coefficients for |S11| < -10 dB yielded an impedance bandwidth of 25.6–31.8 GHz (21.5%), a 3-dB axial ratio (AR) bandwidth of 26.1–30.5 GHz (15.5%), a 3-dB gain bandwidth of 26.0–31.1 GHz (17.4%) with a peak gain of 11.0 dBic, and a radiation efficiency of more than 80% in the axial ratio bandwidth.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.2.r.150\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.2.r.150","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种由端射偶极子阵列天线与超表面集成而成的高增益宽带圆极化天线。该天线由两层级联的非均匀超表面组成,该超表面由4 × 4圆形贴片组成,这些贴片具有不等长的交叉槽,放置在端火偶极子阵列天线之上,结构之间有气隙。端火偶极子阵列天线包括四个等间距的偶极子元件,并且每个偶极子连接到印刷在衬底正面和背面的平行带状线。该超表面由半径不同于外圆片的2 × 2圆心片和不等长的交叉槽组成,用于线极化波向圆极化波的偏振转换。实测反射系数为|S11| < -10 dB时,阻抗带宽为25.6-31.8 GHz (21.5%), 3-dB轴比(AR)带宽为26.1-30.5 GHz (15.5%), 3-dB增益带宽为26.0-31.1 GHz(17.4%),峰值增益为11.0 dBic,轴比带宽的辐射效率超过80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Uniform Metasurface-Integrated Circularly Polarized End-Fire Dipole Array Antenna
This paper presents a high-gain wideband circularly polarized antenna composed of an end-fire dipole array antenna integrated with a metasurface. The antenna consists of a two-layer cascaded non-uniform metasurface made up of 4 × 4 circular patches with cross-slots of unequal lengths placed above an end-fire dipole array antenna with an air gap between the structures. The end-fire dipole array antenna comprises four equally spaced dipole elements, and each dipole is connected to a parallel stripline printed on the front and back sides of the substrate. The metasurface, which is made up of a circular patch with 2 × 2 center patches that have a different radius than the outer patches, and the cross-slots of unequal lengths are used for the polarization conversion of a linearly polarized wave to a circularly polarized wave. The measured reflection coefficients for |S11| < -10 dB yielded an impedance bandwidth of 25.6–31.8 GHz (21.5%), a 3-dB axial ratio (AR) bandwidth of 26.1–30.5 GHz (15.5%), a 3-dB gain bandwidth of 26.0–31.1 GHz (17.4%) with a peak gain of 11.0 dBic, and a radiation efficiency of more than 80% in the axial ratio bandwidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1