{"title":"具有Arrhenius能量和熵产生效应的Carreau流体磁流体旋转流的技术模拟:半数值计算","authors":"M. G. Ibrahim, H. Asfour","doi":"10.37394/232013.2022.17.21","DOIUrl":null,"url":null,"abstract":"The present study aimed to investigate the influence of activation energy on the MHD Boundary layer of Carreau nanofluid using a semi-numerical/analytical technique. The governing formulated system of partial differential equations (PDEs) subject to appropriate boundary conditions is shortened to ordinary differential equations (ODEs) by convenient transformations. Generalized Differential Transform (GDTM) is used and compared with the Runge–Kutta Dahlberg method to find the results of the proposed system. GDTM is chosen to cure and overcome the highly non-linear differentiation parts in the present system of ODEs. Gradients of velocity, temperature, and concentration are computed graphically with different values of physical parameters. The solutions are offered in two cases, the first in the case of non-Newtonian fluid (We=0.2) and the other in the case of base fluid (We=0.2), which is concluded in the same figure. The accuracy of GDTM is tested with many existing published types of research and found to be excellent. It is worth-mentioned that the distribution of velocity growths at high values of power index law relation. This fluid model can be applied in solar energy power generation, ethylene glycol, nuclear reactions, etc.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Simulation for the Hydromagnetic Rotating Flow of Carreau Fluid with Arrhenius Energy and Entropy Generation Effects: Semi-Numerical Calculations\",\"authors\":\"M. G. Ibrahim, H. Asfour\",\"doi\":\"10.37394/232013.2022.17.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study aimed to investigate the influence of activation energy on the MHD Boundary layer of Carreau nanofluid using a semi-numerical/analytical technique. The governing formulated system of partial differential equations (PDEs) subject to appropriate boundary conditions is shortened to ordinary differential equations (ODEs) by convenient transformations. Generalized Differential Transform (GDTM) is used and compared with the Runge–Kutta Dahlberg method to find the results of the proposed system. GDTM is chosen to cure and overcome the highly non-linear differentiation parts in the present system of ODEs. Gradients of velocity, temperature, and concentration are computed graphically with different values of physical parameters. The solutions are offered in two cases, the first in the case of non-Newtonian fluid (We=0.2) and the other in the case of base fluid (We=0.2), which is concluded in the same figure. The accuracy of GDTM is tested with many existing published types of research and found to be excellent. It is worth-mentioned that the distribution of velocity growths at high values of power index law relation. This fluid model can be applied in solar energy power generation, ethylene glycol, nuclear reactions, etc.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2022.17.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2022.17.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Technical Simulation for the Hydromagnetic Rotating Flow of Carreau Fluid with Arrhenius Energy and Entropy Generation Effects: Semi-Numerical Calculations
The present study aimed to investigate the influence of activation energy on the MHD Boundary layer of Carreau nanofluid using a semi-numerical/analytical technique. The governing formulated system of partial differential equations (PDEs) subject to appropriate boundary conditions is shortened to ordinary differential equations (ODEs) by convenient transformations. Generalized Differential Transform (GDTM) is used and compared with the Runge–Kutta Dahlberg method to find the results of the proposed system. GDTM is chosen to cure and overcome the highly non-linear differentiation parts in the present system of ODEs. Gradients of velocity, temperature, and concentration are computed graphically with different values of physical parameters. The solutions are offered in two cases, the first in the case of non-Newtonian fluid (We=0.2) and the other in the case of base fluid (We=0.2), which is concluded in the same figure. The accuracy of GDTM is tested with many existing published types of research and found to be excellent. It is worth-mentioned that the distribution of velocity growths at high values of power index law relation. This fluid model can be applied in solar energy power generation, ethylene glycol, nuclear reactions, etc.
期刊介绍:
WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.