Yavuz Selim Balcioglu, B. Sezen, M. S. Gok, Sezai Tunca
{"title":"深度学习的图像处理:通过深度学习检测金属齿轮的表面缺陷","authors":"Yavuz Selim Balcioglu, B. Sezen, M. S. Gok, Sezai Tunca","doi":"10.32548/2022.me-04230","DOIUrl":null,"url":null,"abstract":"Intelligent production requires improved data analytics and better technological possibilities to improve system performance and decision making. With the widespread use of the machine learning process, a growing need has arisen for processing extensive production data, equipped with high volumes, high speed, and high diversity. At this point, deep learning provides advanced analysis tools for processing and analyzing extensive production data. The deep convolutional neural network (DCNN) displays state-of-the-art performance on many grounds, including metal manufacturing surface defect detection. However, there is still space for improving the defect detection performance over generic DCNN models. The proposed approach performed better than the associated methods in the particular area of surface crack detection. The defect zones of disjointed results are classified into their unique classes by a DCNN. The experimental outcomes prove that this method meets the durability and efficiency requirements for metallic object defect detection. In time, it can also be extended to other detection methods. At the same time, the study will increase the accuracy quality of the features that can make a difference in the deep learning method for the detection of surface defects.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Processing with Deep Learning: Surface Defect Detection of Metal Gears through Deep Learning\",\"authors\":\"Yavuz Selim Balcioglu, B. Sezen, M. S. Gok, Sezai Tunca\",\"doi\":\"10.32548/2022.me-04230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent production requires improved data analytics and better technological possibilities to improve system performance and decision making. With the widespread use of the machine learning process, a growing need has arisen for processing extensive production data, equipped with high volumes, high speed, and high diversity. At this point, deep learning provides advanced analysis tools for processing and analyzing extensive production data. The deep convolutional neural network (DCNN) displays state-of-the-art performance on many grounds, including metal manufacturing surface defect detection. However, there is still space for improving the defect detection performance over generic DCNN models. The proposed approach performed better than the associated methods in the particular area of surface crack detection. The defect zones of disjointed results are classified into their unique classes by a DCNN. The experimental outcomes prove that this method meets the durability and efficiency requirements for metallic object defect detection. In time, it can also be extended to other detection methods. At the same time, the study will increase the accuracy quality of the features that can make a difference in the deep learning method for the detection of surface defects.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2022.me-04230\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2022.me-04230","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Image Processing with Deep Learning: Surface Defect Detection of Metal Gears through Deep Learning
Intelligent production requires improved data analytics and better technological possibilities to improve system performance and decision making. With the widespread use of the machine learning process, a growing need has arisen for processing extensive production data, equipped with high volumes, high speed, and high diversity. At this point, deep learning provides advanced analysis tools for processing and analyzing extensive production data. The deep convolutional neural network (DCNN) displays state-of-the-art performance on many grounds, including metal manufacturing surface defect detection. However, there is still space for improving the defect detection performance over generic DCNN models. The proposed approach performed better than the associated methods in the particular area of surface crack detection. The defect zones of disjointed results are classified into their unique classes by a DCNN. The experimental outcomes prove that this method meets the durability and efficiency requirements for metallic object defect detection. In time, it can also be extended to other detection methods. At the same time, the study will increase the accuracy quality of the features that can make a difference in the deep learning method for the detection of surface defects.
期刊介绍:
Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.