O. Skydan, T. Fedoniuk, Оleksandr S. Mozharovskii, О. В. Zhukov, A. Zymaroieva, Viktor M. Pazych, Vitaliy V. Hurelia, T. Melnychuk
{"title":"利用地球观测卫星遥感数据监测乌克兰西尔维斯松森林树木死亡率","authors":"O. Skydan, T. Fedoniuk, Оleksandr S. Mozharovskii, О. В. Zhukov, A. Zymaroieva, Viktor M. Pazych, Vitaliy V. Hurelia, T. Melnychuk","doi":"10.15287/afr.2022.2328","DOIUrl":null,"url":null,"abstract":"This article considers the application of remote sensing data to solve the problems of forestry in the Polissia zone (Ukraine). The satellite remote sensing was shown to be applicable to monitoring the damage caused by diseases and pests to forest resources and to assessing the effects of fires. During the research, a detailed analysis and optimization of the information content of Sentinel-2 long-term data sets was performed to detect changes in the forest cover of Polissia, affected by pests and damaged by fires. The following classification algorithms were used for automated decryption: the maximum likelihood method; cluster classification without training; Principal Component Analysis (PCA); Random Forest classification. The results of this study indicate the high potential of Sentinel-2 data for application in applied problems of forestry and vegetation analysis, despite the decametric spatial resolution. Our proposed workflow has achieved an overall classification accuracy of 90 % for the Polissia region, indicating its reliability and potential for scaling to a higher level, and the proposed forecast model is stationary and does not depend on time parameters. To improve the classification results, testing of different combinations of bands emphasized the importance of Band 8 in combination with red edge bands, as well as other bands with a resolution of 10 m for summer scenes. The red margin shows clearly visible differences in the spectral profiles, but bands with a higher resolution of 10 m were crucial for good results.","PeriodicalId":48954,"journal":{"name":"Annals of Forest Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Monitoring tree mortality in Ukrainian Pinus sylvestris L. forests using remote sensing data from earth observing satellites\",\"authors\":\"O. Skydan, T. Fedoniuk, Оleksandr S. Mozharovskii, О. В. Zhukov, A. Zymaroieva, Viktor M. Pazych, Vitaliy V. Hurelia, T. Melnychuk\",\"doi\":\"10.15287/afr.2022.2328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers the application of remote sensing data to solve the problems of forestry in the Polissia zone (Ukraine). The satellite remote sensing was shown to be applicable to monitoring the damage caused by diseases and pests to forest resources and to assessing the effects of fires. During the research, a detailed analysis and optimization of the information content of Sentinel-2 long-term data sets was performed to detect changes in the forest cover of Polissia, affected by pests and damaged by fires. The following classification algorithms were used for automated decryption: the maximum likelihood method; cluster classification without training; Principal Component Analysis (PCA); Random Forest classification. The results of this study indicate the high potential of Sentinel-2 data for application in applied problems of forestry and vegetation analysis, despite the decametric spatial resolution. Our proposed workflow has achieved an overall classification accuracy of 90 % for the Polissia region, indicating its reliability and potential for scaling to a higher level, and the proposed forecast model is stationary and does not depend on time parameters. To improve the classification results, testing of different combinations of bands emphasized the importance of Band 8 in combination with red edge bands, as well as other bands with a resolution of 10 m for summer scenes. The red margin shows clearly visible differences in the spectral profiles, but bands with a higher resolution of 10 m were crucial for good results.\",\"PeriodicalId\":48954,\"journal\":{\"name\":\"Annals of Forest Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15287/afr.2022.2328\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15287/afr.2022.2328","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Monitoring tree mortality in Ukrainian Pinus sylvestris L. forests using remote sensing data from earth observing satellites
This article considers the application of remote sensing data to solve the problems of forestry in the Polissia zone (Ukraine). The satellite remote sensing was shown to be applicable to monitoring the damage caused by diseases and pests to forest resources and to assessing the effects of fires. During the research, a detailed analysis and optimization of the information content of Sentinel-2 long-term data sets was performed to detect changes in the forest cover of Polissia, affected by pests and damaged by fires. The following classification algorithms were used for automated decryption: the maximum likelihood method; cluster classification without training; Principal Component Analysis (PCA); Random Forest classification. The results of this study indicate the high potential of Sentinel-2 data for application in applied problems of forestry and vegetation analysis, despite the decametric spatial resolution. Our proposed workflow has achieved an overall classification accuracy of 90 % for the Polissia region, indicating its reliability and potential for scaling to a higher level, and the proposed forecast model is stationary and does not depend on time parameters. To improve the classification results, testing of different combinations of bands emphasized the importance of Band 8 in combination with red edge bands, as well as other bands with a resolution of 10 m for summer scenes. The red margin shows clearly visible differences in the spectral profiles, but bands with a higher resolution of 10 m were crucial for good results.
期刊介绍:
Annals of Forest Research is a semestrial open access journal, which publishes research articles, research notes and critical review papers, exclusively in English, on topics dealing with forestry and environmental sciences. The journal promotes high scientific level articles, by following international editorial conventions and by applying a peer-review selection process.