持久性存储器和磁盘的高性能分级文件系统

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Storage Pub Date : 2023-01-13 DOI:10.1145/3580280
Shengan Zheng, Morteza Hoseinzadeh, S. Swanson, Linpeng Huang
{"title":"持久性存储器和磁盘的高性能分级文件系统","authors":"Shengan Zheng, Morteza Hoseinzadeh, S. Swanson, Linpeng Huang","doi":"10.1145/3580280","DOIUrl":null,"url":null,"abstract":"Emerging fast, byte-addressable persistent memory (PM) promises substantial storage performance gains compared with traditional disks. We present TPFS, a tiered file system that combines PM and slow disks to create a storage system with near-PM performance and large capacity. TPFS steers incoming file input/output (I/O) to PM, dynamic random access memory (DRAM), or disk depending on the synchronicity, write size, and read frequency. TPFS profiles the application’s access stream online to predict the behavior of file access. In the background, TPFS estimates the “temperature” of file data and migrates the write-cold and read-hot file data from PM to disks. To fully utilize disk bandwidth, TPFS coalesces data blocks into large, sequential writes. Experimental results show that with a small amount of PM and a large solid-state drive (SSD), TPFS achieves up to 7.3× and 7.9× throughput improvement compared with EXT4 and XFS running on an SSD alone, respectively. As the amount of PM grows, TPFS’s performance improves until it matches the performance of a PM-only file system.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"19 1","pages":"1 - 28"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPFS: A High-Performance Tiered File System for Persistent Memories and Disks\",\"authors\":\"Shengan Zheng, Morteza Hoseinzadeh, S. Swanson, Linpeng Huang\",\"doi\":\"10.1145/3580280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging fast, byte-addressable persistent memory (PM) promises substantial storage performance gains compared with traditional disks. We present TPFS, a tiered file system that combines PM and slow disks to create a storage system with near-PM performance and large capacity. TPFS steers incoming file input/output (I/O) to PM, dynamic random access memory (DRAM), or disk depending on the synchronicity, write size, and read frequency. TPFS profiles the application’s access stream online to predict the behavior of file access. In the background, TPFS estimates the “temperature” of file data and migrates the write-cold and read-hot file data from PM to disks. To fully utilize disk bandwidth, TPFS coalesces data blocks into large, sequential writes. Experimental results show that with a small amount of PM and a large solid-state drive (SSD), TPFS achieves up to 7.3× and 7.9× throughput improvement compared with EXT4 and XFS running on an SSD alone, respectively. As the amount of PM grows, TPFS’s performance improves until it matches the performance of a PM-only file system.\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"19 1\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580280\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580280","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

与传统磁盘相比,新兴的快速字节可寻址持久存储器(PM)有望大幅提高存储性能。我们介绍了TPFS,这是一种分层文件系统,它结合了PM和慢速磁盘,创建了一个具有接近PM性能和大容量的存储系统。TPFS根据同步性、写入大小和读取频率将传入的文件输入/输出(I/O)引导到PM、动态随机存取存储器(DRAM)或磁盘。TPFS在线评测应用程序的访问流,以预测文件访问的行为。在后台,TPFS估计文件数据的“温度”,并将冷写和热读文件数据从PM迁移到磁盘。为了充分利用磁盘带宽,TPFS将数据块合并为大的顺序写入。实验结果表明,在少量PM和大型固态驱动器(SSD)的情况下,与单独在SSD上运行的EXT4和XFS相比,TPFS的吞吐量分别提高了7.3倍和7.9倍。随着PM数量的增长,TPFS的性能会提高,直到它与仅PM文件系统的性能相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TPFS: A High-Performance Tiered File System for Persistent Memories and Disks
Emerging fast, byte-addressable persistent memory (PM) promises substantial storage performance gains compared with traditional disks. We present TPFS, a tiered file system that combines PM and slow disks to create a storage system with near-PM performance and large capacity. TPFS steers incoming file input/output (I/O) to PM, dynamic random access memory (DRAM), or disk depending on the synchronicity, write size, and read frequency. TPFS profiles the application’s access stream online to predict the behavior of file access. In the background, TPFS estimates the “temperature” of file data and migrates the write-cold and read-hot file data from PM to disks. To fully utilize disk bandwidth, TPFS coalesces data blocks into large, sequential writes. Experimental results show that with a small amount of PM and a large solid-state drive (SSD), TPFS achieves up to 7.3× and 7.9× throughput improvement compared with EXT4 and XFS running on an SSD alone, respectively. As the amount of PM grows, TPFS’s performance improves until it matches the performance of a PM-only file system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Storage
ACM Transactions on Storage COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
4.20
自引率
5.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.
期刊最新文献
LVMT: An Efficient Authenticated Storage for Blockchain The Design of Fast Delta Encoding for Delta Compression Based Storage Systems A Memory-Disaggregated Radix Tree Fastmove: A Comprehensive Study of On-Chip DMA and its Demonstration for Accelerating Data Movement in NVM-based Storage Systems FSDedup: Feature-Aware and Selective Deduplication for Improving Performance of Encrypted Non-Volatile Main Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1