磁屏蔽结构对60mm直径小功率霍尔推力器放电特性和性能的影响

IF 0.9 Q3 ENGINEERING, AEROSPACE Journal of Aerospace Technology and Management Pub Date : 2021-05-21 DOI:10.1590/JATM.V13.1223
W. Guo, Jun Gao, Zuo Gu, Ning Guo, Mingfang Sun
{"title":"磁屏蔽结构对60mm直径小功率霍尔推力器放电特性和性能的影响","authors":"W. Guo, Jun Gao, Zuo Gu, Ning Guo, Mingfang Sun","doi":"10.1590/JATM.V13.1223","DOIUrl":null,"url":null,"abstract":"Lifetime is a main factor restraining the application of low-power Hall thruster. Magnetic shielding configuration is regarded as a promising method to prolong the lifespan of Hall thruster. Aiming to demonstrate the feasibility and effectiveness of magnetic shielding configuration applying on low-power Hall thruster, a 60-mm diameter Hall thruster in partial magnetic shielding configuration was designated. Both the numerical and experimental methods were used to investigate the discharge characteristics of the Hall thruster and help understand the mechanism behind. The maximum anode efficiency was achieved as high as 29.7% with 1.7 mg·s–1 anode mass flow and 320 V discharge voltage. To evaluate the effectiveness of the magnetic shielding used for low-power Hall thruster, a 2000 h lifetime test has been carried out and the results indicate that the erosion rate has been decreased below 0.2 μm·h–1.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Magnetic Shielding Configuration on Discharge Characteristics and Performance of a 60 mm-Diameter Low-Power Hall Thruster\",\"authors\":\"W. Guo, Jun Gao, Zuo Gu, Ning Guo, Mingfang Sun\",\"doi\":\"10.1590/JATM.V13.1223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lifetime is a main factor restraining the application of low-power Hall thruster. Magnetic shielding configuration is regarded as a promising method to prolong the lifespan of Hall thruster. Aiming to demonstrate the feasibility and effectiveness of magnetic shielding configuration applying on low-power Hall thruster, a 60-mm diameter Hall thruster in partial magnetic shielding configuration was designated. Both the numerical and experimental methods were used to investigate the discharge characteristics of the Hall thruster and help understand the mechanism behind. The maximum anode efficiency was achieved as high as 29.7% with 1.7 mg·s–1 anode mass flow and 320 V discharge voltage. To evaluate the effectiveness of the magnetic shielding used for low-power Hall thruster, a 2000 h lifetime test has been carried out and the results indicate that the erosion rate has been decreased below 0.2 μm·h–1.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/JATM.V13.1223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/JATM.V13.1223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

寿命是制约低功率霍尔推力器应用的主要因素。磁屏蔽结构被认为是一种很有前途的延长霍尔推进器寿命的方法。为了验证磁屏蔽结构应用于小功率霍尔推进器的可行性和有效性,设计了一种60mm直径的部分磁屏蔽霍尔推进器。采用数值和实验相结合的方法研究了霍尔推力器的放电特性,有助于了解其背后的机理。当阳极质量流量为1.7 mg·s-1,放电电压为320 V时,阳极效率最高可达29.7%。为了评价磁屏蔽在小功率霍尔推进器上的有效性,进行了2000 h寿命试验,结果表明,磁屏蔽的腐蚀速率降低到0.2 μm·h - 1以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Magnetic Shielding Configuration on Discharge Characteristics and Performance of a 60 mm-Diameter Low-Power Hall Thruster
Lifetime is a main factor restraining the application of low-power Hall thruster. Magnetic shielding configuration is regarded as a promising method to prolong the lifespan of Hall thruster. Aiming to demonstrate the feasibility and effectiveness of magnetic shielding configuration applying on low-power Hall thruster, a 60-mm diameter Hall thruster in partial magnetic shielding configuration was designated. Both the numerical and experimental methods were used to investigate the discharge characteristics of the Hall thruster and help understand the mechanism behind. The maximum anode efficiency was achieved as high as 29.7% with 1.7 mg·s–1 anode mass flow and 320 V discharge voltage. To evaluate the effectiveness of the magnetic shielding used for low-power Hall thruster, a 2000 h lifetime test has been carried out and the results indicate that the erosion rate has been decreased below 0.2 μm·h–1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
审稿时长
20 weeks
期刊最新文献
Influence of 2D and 3D Arrangements of Aramid Fibers on the Dart Drop Test of Epoxy Composites Smart Cabin Design Concept for Regional Aircraft: Challenges, Future Aspects & Requirements Smart Cabin Design Concept for Regional Aircraft: Technologies, Applications & Architecture Formation of a Regionally Oriented Structure and Number of the Airline’s Helicopter Fleet Based on Consumer Preferences of Customers Indirect Connection Analysis Based on Wave-system Structures of Airlines Architecture in Hub Airport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1