Catherine Neubauer, G. Matthews, E. P. De Los Santos
{"title":"自动化车辆中的疲劳和二次介质影响:多维状态视角","authors":"Catherine Neubauer, G. Matthews, E. P. De Los Santos","doi":"10.3390/safety9010011","DOIUrl":null,"url":null,"abstract":"Safety researchers increasingly recognize the impacts of task-induced fatigue on vehicle driving behavior. The current study (N = 180) explored the use of a multidimensional fatigue measure, the Driver Fatigue Questionnaire (DFQ), to test the impacts of vehicle automation, secondary media use, and driver personality on fatigue states and performance in a driving simulator. Secondary media included a trivia game and a cellphone conversation. Simulated driving induced large-magnitude fatigue states in participants, including tiredness, confusion, coping through self-comforting, and muscular symptoms. Consistent with previous laboratory and field studies, dispositional fatigue proneness predicted increases in state fatigue during the drive, especially tiredness, irrespective of automation level and secondary media. Similar to previous studies, automation slowed braking response to the emergency event following takeover but did not affect fatigue. Secondary media use relieved subjective fatigue and improved lateral control but did not affect emergency braking. Confusion was, surprisingly, associated with faster braking, and tiredness was associated with impaired control of lateral position of the vehicle. These associations were not moderated by the experimental factors. Overall, data support the use of multidimensional assessments of both fatigue symptoms and information-processing components for evaluating safety impacts of interventions for fatigue.","PeriodicalId":36827,"journal":{"name":"Safety","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fatigue and Secondary Media Impacts in the Automated Vehicle: A Multidimensional State Perspective\",\"authors\":\"Catherine Neubauer, G. Matthews, E. P. De Los Santos\",\"doi\":\"10.3390/safety9010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Safety researchers increasingly recognize the impacts of task-induced fatigue on vehicle driving behavior. The current study (N = 180) explored the use of a multidimensional fatigue measure, the Driver Fatigue Questionnaire (DFQ), to test the impacts of vehicle automation, secondary media use, and driver personality on fatigue states and performance in a driving simulator. Secondary media included a trivia game and a cellphone conversation. Simulated driving induced large-magnitude fatigue states in participants, including tiredness, confusion, coping through self-comforting, and muscular symptoms. Consistent with previous laboratory and field studies, dispositional fatigue proneness predicted increases in state fatigue during the drive, especially tiredness, irrespective of automation level and secondary media. Similar to previous studies, automation slowed braking response to the emergency event following takeover but did not affect fatigue. Secondary media use relieved subjective fatigue and improved lateral control but did not affect emergency braking. Confusion was, surprisingly, associated with faster braking, and tiredness was associated with impaired control of lateral position of the vehicle. These associations were not moderated by the experimental factors. Overall, data support the use of multidimensional assessments of both fatigue symptoms and information-processing components for evaluating safety impacts of interventions for fatigue.\",\"PeriodicalId\":36827,\"journal\":{\"name\":\"Safety\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/safety9010011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/safety9010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Fatigue and Secondary Media Impacts in the Automated Vehicle: A Multidimensional State Perspective
Safety researchers increasingly recognize the impacts of task-induced fatigue on vehicle driving behavior. The current study (N = 180) explored the use of a multidimensional fatigue measure, the Driver Fatigue Questionnaire (DFQ), to test the impacts of vehicle automation, secondary media use, and driver personality on fatigue states and performance in a driving simulator. Secondary media included a trivia game and a cellphone conversation. Simulated driving induced large-magnitude fatigue states in participants, including tiredness, confusion, coping through self-comforting, and muscular symptoms. Consistent with previous laboratory and field studies, dispositional fatigue proneness predicted increases in state fatigue during the drive, especially tiredness, irrespective of automation level and secondary media. Similar to previous studies, automation slowed braking response to the emergency event following takeover but did not affect fatigue. Secondary media use relieved subjective fatigue and improved lateral control but did not affect emergency braking. Confusion was, surprisingly, associated with faster braking, and tiredness was associated with impaired control of lateral position of the vehicle. These associations were not moderated by the experimental factors. Overall, data support the use of multidimensional assessments of both fatigue symptoms and information-processing components for evaluating safety impacts of interventions for fatigue.