K. Roni, Elfidiah Elfidiah, Ryan Pasongko, Dian Kharisma, S. Martini
{"title":"用原子吸收分光光度法研究了温度和时间对罐装橙汁饮料中铅离子迁移的影响","authors":"K. Roni, Elfidiah Elfidiah, Ryan Pasongko, Dian Kharisma, S. Martini","doi":"10.52571/ptq.v18.n38.2021.12_roni_pgs_164_175.pdf","DOIUrl":null,"url":null,"abstract":"Background: Indonesia is a country that has a tropical climate throughout the year along with relatively less difference of temperature during both dry and rainy seasons. The mobile community influences people’s interest in packaged drinks, including canned fruit juice. However, the first obstacle is the condition of the place and the temperature-related heavy metal lead (Pb) migration in canned orange juice drinks. Methods: This study focused on the relationship between Pb metal content, storage treatment, storage temperature, and storage time. This study used a canned orange juice drink from the distributor warehouse of Palembang city, standard Pb(NO3)2 (Merck) powder, 0.5 mol/l concentrated HNO3 solutions (Merck), concentrated HCl solution (Merck), demineralized water, Buffer pH 4.7, and 10. The sample was conducted from 5 °C to 40 °C with the testing period within 1-30 days. The sample at certain day intervals would then be tested to change pH and Pb ion concentration using the Atomic Absorption Spectrophotometry (AAS) test. Results and Discussion: In this study, the sample of orange juice was given different treatments, and each treatment has a differentiated analysis code consisting of S-SBJ-1-1 (Distributor warehouse) for one day of storage time, and the codes for 10 of storage time are SSBJ-10-1 (Freezer, temperature 5 °C), S-SJB-10-2 (Refrigerator, temperature 20 °C), S-SJB-10-3 (Homeroom, temperature 28 °C), S-SJB-10-4 (Oven, temperature 40 °C), S-SJB-10-5 (Open space, temperature 22°C - 38 °C). Furthermore, codes for 30 days of sample storage are S-SBJ-30-1 (Freezer, temperature 5 °C), S-SJB-30-2 (Refrigerator, temperature 20 °C), S-SJB-30-3 (Room house, temperature 28 °C, S-SJB-30-4 (Oven, temperature 40°C), and S-SJB-30-5 (Open space, temperature 22 °C-38 °C). Conclusions: Temperature and time have a significant influence on the migration of the heavy metal lead (Pb) from the can to orange juice drinks, and, for the minimum pH value, there is a less significant change. Overall, canned fruit juice should be stored at a temperature below 28 °C, and the drink is protected from direct sunlight and high humidity.","PeriodicalId":45103,"journal":{"name":"Periodico Tche Quimica","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE EFFECT OF TEMPERATURE AND TIME ON THE MIGRATION OF LEAD METAL (PB) IONS IN CANNED ORANGE JUICE DRINK USING ATOMIC ABSORPTION SPECTROPHOTOMETRY ANALYSIS\",\"authors\":\"K. Roni, Elfidiah Elfidiah, Ryan Pasongko, Dian Kharisma, S. Martini\",\"doi\":\"10.52571/ptq.v18.n38.2021.12_roni_pgs_164_175.pdf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Indonesia is a country that has a tropical climate throughout the year along with relatively less difference of temperature during both dry and rainy seasons. The mobile community influences people’s interest in packaged drinks, including canned fruit juice. However, the first obstacle is the condition of the place and the temperature-related heavy metal lead (Pb) migration in canned orange juice drinks. Methods: This study focused on the relationship between Pb metal content, storage treatment, storage temperature, and storage time. This study used a canned orange juice drink from the distributor warehouse of Palembang city, standard Pb(NO3)2 (Merck) powder, 0.5 mol/l concentrated HNO3 solutions (Merck), concentrated HCl solution (Merck), demineralized water, Buffer pH 4.7, and 10. The sample was conducted from 5 °C to 40 °C with the testing period within 1-30 days. The sample at certain day intervals would then be tested to change pH and Pb ion concentration using the Atomic Absorption Spectrophotometry (AAS) test. Results and Discussion: In this study, the sample of orange juice was given different treatments, and each treatment has a differentiated analysis code consisting of S-SBJ-1-1 (Distributor warehouse) for one day of storage time, and the codes for 10 of storage time are SSBJ-10-1 (Freezer, temperature 5 °C), S-SJB-10-2 (Refrigerator, temperature 20 °C), S-SJB-10-3 (Homeroom, temperature 28 °C), S-SJB-10-4 (Oven, temperature 40 °C), S-SJB-10-5 (Open space, temperature 22°C - 38 °C). Furthermore, codes for 30 days of sample storage are S-SBJ-30-1 (Freezer, temperature 5 °C), S-SJB-30-2 (Refrigerator, temperature 20 °C), S-SJB-30-3 (Room house, temperature 28 °C, S-SJB-30-4 (Oven, temperature 40°C), and S-SJB-30-5 (Open space, temperature 22 °C-38 °C). Conclusions: Temperature and time have a significant influence on the migration of the heavy metal lead (Pb) from the can to orange juice drinks, and, for the minimum pH value, there is a less significant change. Overall, canned fruit juice should be stored at a temperature below 28 °C, and the drink is protected from direct sunlight and high humidity.\",\"PeriodicalId\":45103,\"journal\":{\"name\":\"Periodico Tche Quimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodico Tche Quimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52571/ptq.v18.n38.2021.12_roni_pgs_164_175.pdf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Tche Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52571/ptq.v18.n38.2021.12_roni_pgs_164_175.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
THE EFFECT OF TEMPERATURE AND TIME ON THE MIGRATION OF LEAD METAL (PB) IONS IN CANNED ORANGE JUICE DRINK USING ATOMIC ABSORPTION SPECTROPHOTOMETRY ANALYSIS
Background: Indonesia is a country that has a tropical climate throughout the year along with relatively less difference of temperature during both dry and rainy seasons. The mobile community influences people’s interest in packaged drinks, including canned fruit juice. However, the first obstacle is the condition of the place and the temperature-related heavy metal lead (Pb) migration in canned orange juice drinks. Methods: This study focused on the relationship between Pb metal content, storage treatment, storage temperature, and storage time. This study used a canned orange juice drink from the distributor warehouse of Palembang city, standard Pb(NO3)2 (Merck) powder, 0.5 mol/l concentrated HNO3 solutions (Merck), concentrated HCl solution (Merck), demineralized water, Buffer pH 4.7, and 10. The sample was conducted from 5 °C to 40 °C with the testing period within 1-30 days. The sample at certain day intervals would then be tested to change pH and Pb ion concentration using the Atomic Absorption Spectrophotometry (AAS) test. Results and Discussion: In this study, the sample of orange juice was given different treatments, and each treatment has a differentiated analysis code consisting of S-SBJ-1-1 (Distributor warehouse) for one day of storage time, and the codes for 10 of storage time are SSBJ-10-1 (Freezer, temperature 5 °C), S-SJB-10-2 (Refrigerator, temperature 20 °C), S-SJB-10-3 (Homeroom, temperature 28 °C), S-SJB-10-4 (Oven, temperature 40 °C), S-SJB-10-5 (Open space, temperature 22°C - 38 °C). Furthermore, codes for 30 days of sample storage are S-SBJ-30-1 (Freezer, temperature 5 °C), S-SJB-30-2 (Refrigerator, temperature 20 °C), S-SJB-30-3 (Room house, temperature 28 °C, S-SJB-30-4 (Oven, temperature 40°C), and S-SJB-30-5 (Open space, temperature 22 °C-38 °C). Conclusions: Temperature and time have a significant influence on the migration of the heavy metal lead (Pb) from the can to orange juice drinks, and, for the minimum pH value, there is a less significant change. Overall, canned fruit juice should be stored at a temperature below 28 °C, and the drink is protected from direct sunlight and high humidity.
期刊介绍:
The Journal publishes original research papers, review articles, short communications (scientific publications), book reviews, forum articles, announcements or letters as well as interviews. Researchers from all countries are invited to publish on its pages.