{"title":"经血清源性细胞外囊泡包封的miR-142-5p通过PTEN/PI3K/Akt轴保护脓毒症大鼠远程缺血预处理后的急性肺损伤","authors":"Wenliang Zhu, Xiaopei Huang, Shi-Yuan Qiu, Lingxiao Feng, Yue Wu, Huanzhang Shao","doi":"10.1159/000522231","DOIUrl":null,"url":null,"abstract":"This study intends to investigate the effects of miR-142-5p encapsulated by serum-derived extracellular vesicles (EVs) on septic acute lung injury (ALI) following remote ischemic preconditioning (RIPC) through a PTEN-involved mechanism. ALI was induced in rats by lipopolysaccharide (LPS) injection, 24 h before which RIPC was performed via the left lower limb. Next, the binding affinity between miR-142-5p and PTEN was identified. EVs were isolated from serum and injected into rats. The morphology of lung tissues, pulmonary edema, and inflammatory cell infiltration into lung tissues were then assessed, and TNF-α and IL-6 levels in serum and lung tissues were measured. The results indicated that RIPC could attenuate ALI in sepsis. miR-142-5p expression was increased in serum, lung tissues, and serum-derived EVs of ALI rats following RIPC. miR-142-5p could target PTEN to activate the PI3K/Akt signaling pathway. miR-142-5p shuttled by serum-derived EVs reduced pulmonary edema, neutrophil infiltration, and TNF-α and IL-6 levels, thus alleviating ALI in LPS-induced septic rats upon RIPC. Collectively, serum-derived EVs-loaded miR-142-5p downregulated PTEN and activated PI3K/Akt to inhibit ALI in sepsis following RIPC, thus highlighting potential therapeutic molecular targets against ALI in sepsis.","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"miR-142-5p Encapsulated by Serum-Derived Extracellular Vesicles Protects against Acute Lung Injury in Septic Rats following Remote Ischemic Preconditioning via the PTEN/PI3K/Akt Axis\",\"authors\":\"Wenliang Zhu, Xiaopei Huang, Shi-Yuan Qiu, Lingxiao Feng, Yue Wu, Huanzhang Shao\",\"doi\":\"10.1159/000522231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study intends to investigate the effects of miR-142-5p encapsulated by serum-derived extracellular vesicles (EVs) on septic acute lung injury (ALI) following remote ischemic preconditioning (RIPC) through a PTEN-involved mechanism. ALI was induced in rats by lipopolysaccharide (LPS) injection, 24 h before which RIPC was performed via the left lower limb. Next, the binding affinity between miR-142-5p and PTEN was identified. EVs were isolated from serum and injected into rats. The morphology of lung tissues, pulmonary edema, and inflammatory cell infiltration into lung tissues were then assessed, and TNF-α and IL-6 levels in serum and lung tissues were measured. The results indicated that RIPC could attenuate ALI in sepsis. miR-142-5p expression was increased in serum, lung tissues, and serum-derived EVs of ALI rats following RIPC. miR-142-5p could target PTEN to activate the PI3K/Akt signaling pathway. miR-142-5p shuttled by serum-derived EVs reduced pulmonary edema, neutrophil infiltration, and TNF-α and IL-6 levels, thus alleviating ALI in LPS-induced septic rats upon RIPC. Collectively, serum-derived EVs-loaded miR-142-5p downregulated PTEN and activated PI3K/Akt to inhibit ALI in sepsis following RIPC, thus highlighting potential therapeutic molecular targets against ALI in sepsis.\",\"PeriodicalId\":16113,\"journal\":{\"name\":\"Journal of Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innate Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000522231\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000522231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
miR-142-5p Encapsulated by Serum-Derived Extracellular Vesicles Protects against Acute Lung Injury in Septic Rats following Remote Ischemic Preconditioning via the PTEN/PI3K/Akt Axis
This study intends to investigate the effects of miR-142-5p encapsulated by serum-derived extracellular vesicles (EVs) on septic acute lung injury (ALI) following remote ischemic preconditioning (RIPC) through a PTEN-involved mechanism. ALI was induced in rats by lipopolysaccharide (LPS) injection, 24 h before which RIPC was performed via the left lower limb. Next, the binding affinity between miR-142-5p and PTEN was identified. EVs were isolated from serum and injected into rats. The morphology of lung tissues, pulmonary edema, and inflammatory cell infiltration into lung tissues were then assessed, and TNF-α and IL-6 levels in serum and lung tissues were measured. The results indicated that RIPC could attenuate ALI in sepsis. miR-142-5p expression was increased in serum, lung tissues, and serum-derived EVs of ALI rats following RIPC. miR-142-5p could target PTEN to activate the PI3K/Akt signaling pathway. miR-142-5p shuttled by serum-derived EVs reduced pulmonary edema, neutrophil infiltration, and TNF-α and IL-6 levels, thus alleviating ALI in LPS-induced septic rats upon RIPC. Collectively, serum-derived EVs-loaded miR-142-5p downregulated PTEN and activated PI3K/Akt to inhibit ALI in sepsis following RIPC, thus highlighting potential therapeutic molecular targets against ALI in sepsis.
期刊介绍:
The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.