Zixuan Meng, Rufen Zhang, Hongliang Shi, Chunlin Ma
{"title":"从1-金刚烷硫醇衍生的新型有机锡(IV)配合物:合成、晶体结构、DFT计算、体外抗真菌活性和细胞毒性","authors":"Zixuan Meng, Rufen Zhang, Hongliang Shi, Chunlin Ma","doi":"10.1007/s11243-023-00528-9","DOIUrl":null,"url":null,"abstract":"<div><p>Five new organotin(IV) complexes, Me<sub>2</sub>SnL<sub>2</sub> (<b>1</b>), <i>n</i>–Bu<sub>2</sub>SnL<sub>2</sub> (<b>2</b>), <i>t</i>–Bu<sub>2</sub>SnL<sub>2</sub> (<b>3</b>), Ph<sub>2</sub>SnL<sub>2</sub> (<b>4</b>), and Ph<sub>3</sub>SnL (<b>5</b>), have been designed and synthesized by the reactions of the deprotonated 1-adamantanethiol ligand (L = C<sub>10</sub>H<sub>15</sub>S) with the corresponding R<sub>2</sub>SnCl<sub>2</sub> (R = Me, <i>n</i>–Bu, <i>t</i>–Bu, Ph) and Ph<sub>3</sub>SnCl. The complexes were characterized by elemental analysis, FT-IR, NMR spectroscopy, and X-ray crystallography. Meanwhile, optimized geometrical parameters, harmonic vibrational frequencies, and frontier molecular orbitals were calculated. The in vitro cytotoxicities of the complexes were evaluated with HeLa and HepG-2. Furthermore, the antifungal activity of the newly synthesized complexes has been evaluated, and the SEM and TEM images were prepared from <i>Alternaria kikuchiana Tanaka</i> to analyze the macroscopic action of the drug on the fungus. As a result, complex <b>5</b> has good antifungal activity and cytotoxicity.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"48 2","pages":"113 - 124"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New organotin(IV) complexes derived from 1-adamantanethiol: synthesis, crystal structure, DFT calculation, and in vitro antifungal activity and cytotoxicity\",\"authors\":\"Zixuan Meng, Rufen Zhang, Hongliang Shi, Chunlin Ma\",\"doi\":\"10.1007/s11243-023-00528-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Five new organotin(IV) complexes, Me<sub>2</sub>SnL<sub>2</sub> (<b>1</b>), <i>n</i>–Bu<sub>2</sub>SnL<sub>2</sub> (<b>2</b>), <i>t</i>–Bu<sub>2</sub>SnL<sub>2</sub> (<b>3</b>), Ph<sub>2</sub>SnL<sub>2</sub> (<b>4</b>), and Ph<sub>3</sub>SnL (<b>5</b>), have been designed and synthesized by the reactions of the deprotonated 1-adamantanethiol ligand (L = C<sub>10</sub>H<sub>15</sub>S) with the corresponding R<sub>2</sub>SnCl<sub>2</sub> (R = Me, <i>n</i>–Bu, <i>t</i>–Bu, Ph) and Ph<sub>3</sub>SnCl. The complexes were characterized by elemental analysis, FT-IR, NMR spectroscopy, and X-ray crystallography. Meanwhile, optimized geometrical parameters, harmonic vibrational frequencies, and frontier molecular orbitals were calculated. The in vitro cytotoxicities of the complexes were evaluated with HeLa and HepG-2. Furthermore, the antifungal activity of the newly synthesized complexes has been evaluated, and the SEM and TEM images were prepared from <i>Alternaria kikuchiana Tanaka</i> to analyze the macroscopic action of the drug on the fungus. As a result, complex <b>5</b> has good antifungal activity and cytotoxicity.</p></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"48 2\",\"pages\":\"113 - 124\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00528-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00528-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
New organotin(IV) complexes derived from 1-adamantanethiol: synthesis, crystal structure, DFT calculation, and in vitro antifungal activity and cytotoxicity
Five new organotin(IV) complexes, Me2SnL2 (1), n–Bu2SnL2 (2), t–Bu2SnL2 (3), Ph2SnL2 (4), and Ph3SnL (5), have been designed and synthesized by the reactions of the deprotonated 1-adamantanethiol ligand (L = C10H15S) with the corresponding R2SnCl2 (R = Me, n–Bu, t–Bu, Ph) and Ph3SnCl. The complexes were characterized by elemental analysis, FT-IR, NMR spectroscopy, and X-ray crystallography. Meanwhile, optimized geometrical parameters, harmonic vibrational frequencies, and frontier molecular orbitals were calculated. The in vitro cytotoxicities of the complexes were evaluated with HeLa and HepG-2. Furthermore, the antifungal activity of the newly synthesized complexes has been evaluated, and the SEM and TEM images were prepared from Alternaria kikuchiana Tanaka to analyze the macroscopic action of the drug on the fungus. As a result, complex 5 has good antifungal activity and cytotoxicity.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.