Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun
{"title":"基于地形自适应和鲁棒卡尔曼滤波的多普勒增强TDCP算法","authors":"Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun","doi":"10.1017/S0373463322000339","DOIUrl":null,"url":null,"abstract":"Abstract Time-differenced carrier phase (TDCP) is a commonly used method of precise velocimetry, but when the receiver is in a dynamic or complex observation environment, the estimation accuracy is reduced. Doppler velocimetry aims at estimating instantaneous velocity, and the accuracy is restricted by the accuracy of measurement. However, in such unfavourable cases, the Doppler measurement is more reliable than the carrier phase measurement. This paper derives the relationship between Doppler observation and TDCP observation, then proposes a Doppler enhanced TDCP algorithm, for the purpose of improving the velocity estimation accuracy in dynamic and complex observation environments. In addition, considering the error caused by the constant speed state update model in the robust Kalman filter (RKF), this paper designs a terrain adaptive and robust Kalman filter (TARKF). After three experimental tests, the improved TDCP algorithm can significantly increase the speed measurement accuracy to sub-metre per second, and the accuracy can be further improved after using TARKF.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Doppler enhanced TDCP algorithm based on terrain adaptive and robust Kalman filter using a stand-alone receiver\",\"authors\":\"Kefan Shao, Zengke Li, Zhehua Yang, Zan Liu, Yaowen Sun\",\"doi\":\"10.1017/S0373463322000339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Time-differenced carrier phase (TDCP) is a commonly used method of precise velocimetry, but when the receiver is in a dynamic or complex observation environment, the estimation accuracy is reduced. Doppler velocimetry aims at estimating instantaneous velocity, and the accuracy is restricted by the accuracy of measurement. However, in such unfavourable cases, the Doppler measurement is more reliable than the carrier phase measurement. This paper derives the relationship between Doppler observation and TDCP observation, then proposes a Doppler enhanced TDCP algorithm, for the purpose of improving the velocity estimation accuracy in dynamic and complex observation environments. In addition, considering the error caused by the constant speed state update model in the robust Kalman filter (RKF), this paper designs a terrain adaptive and robust Kalman filter (TARKF). After three experimental tests, the improved TDCP algorithm can significantly increase the speed measurement accuracy to sub-metre per second, and the accuracy can be further improved after using TARKF.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000339\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000339","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Doppler enhanced TDCP algorithm based on terrain adaptive and robust Kalman filter using a stand-alone receiver
Abstract Time-differenced carrier phase (TDCP) is a commonly used method of precise velocimetry, but when the receiver is in a dynamic or complex observation environment, the estimation accuracy is reduced. Doppler velocimetry aims at estimating instantaneous velocity, and the accuracy is restricted by the accuracy of measurement. However, in such unfavourable cases, the Doppler measurement is more reliable than the carrier phase measurement. This paper derives the relationship between Doppler observation and TDCP observation, then proposes a Doppler enhanced TDCP algorithm, for the purpose of improving the velocity estimation accuracy in dynamic and complex observation environments. In addition, considering the error caused by the constant speed state update model in the robust Kalman filter (RKF), this paper designs a terrain adaptive and robust Kalman filter (TARKF). After three experimental tests, the improved TDCP algorithm can significantly increase the speed measurement accuracy to sub-metre per second, and the accuracy can be further improved after using TARKF.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.