{"title":"卵黄壳纳米结构光学性质的模拟","authors":"Weiming He, Xi Huang, Xiangchao Ma, Jianqi Zhang","doi":"10.1117/1.JNP.17.016003","DOIUrl":null,"url":null,"abstract":"Abstract. A yolk-shell structure is a double-layer hollow nanostructure, which is composed of a shell, a cavity, and a core. The yolk-shell structures have fascinating properties because of their attractive localized surface plasmon resonance (LSPR) feature, which arouses considerable interest in both optically active nanostructures and practical applications. Compared with the single metal nanostructure, a yolk shell has a more controlled degree of freedom, superior optical properties, and potential applications in photocatalysis and solar cell. However, the preparation of yolk shells often requires multiple steps, making it difficult to control the geometric parameters accurately, which leads to uncontrollability of the experimental results. Therefore, it is necessary to study how the size and composition of a yolk shell affect LSPR properties to further guide and optimize the experimental process. Based on the discrete dipole approximation (DDA) method, the absorption spectra, near-field enhancement, and sensing properties of yolk-shell nanoparticles were analyzed. By adjusting the diameters of cavities, cores, shells, and the materials of the shells, we study the influence of yolk-shell structures on the LSPR properties. In detail, the thicknesses of the shells are set from 5 to 20 nm, the diameters of the cavities being set from 50 to 70 nm and the diameters of the yolks are set from 20 to 40 nm. The materials of the shells are set to be dielectric TiO2 and metallic Au, and both of them have Au cores. It is found that Au@Au yolk shells with large cavities or thick shells have better absorption efficiency, but Au @ TiO2 yolk shells are just the opposite. For near-field intensity, Au@Au yolk shells are higher than Au @ TiO2. A yolk-shell structure with larger cavity has smaller full width at half maximum. These results can effectively guide the design of yolk-shell structures for sensing and optoelectronic applications based on LSPR.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of yolk-shell nanostructures optical properties\",\"authors\":\"Weiming He, Xi Huang, Xiangchao Ma, Jianqi Zhang\",\"doi\":\"10.1117/1.JNP.17.016003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. A yolk-shell structure is a double-layer hollow nanostructure, which is composed of a shell, a cavity, and a core. The yolk-shell structures have fascinating properties because of their attractive localized surface plasmon resonance (LSPR) feature, which arouses considerable interest in both optically active nanostructures and practical applications. Compared with the single metal nanostructure, a yolk shell has a more controlled degree of freedom, superior optical properties, and potential applications in photocatalysis and solar cell. However, the preparation of yolk shells often requires multiple steps, making it difficult to control the geometric parameters accurately, which leads to uncontrollability of the experimental results. Therefore, it is necessary to study how the size and composition of a yolk shell affect LSPR properties to further guide and optimize the experimental process. Based on the discrete dipole approximation (DDA) method, the absorption spectra, near-field enhancement, and sensing properties of yolk-shell nanoparticles were analyzed. By adjusting the diameters of cavities, cores, shells, and the materials of the shells, we study the influence of yolk-shell structures on the LSPR properties. In detail, the thicknesses of the shells are set from 5 to 20 nm, the diameters of the cavities being set from 50 to 70 nm and the diameters of the yolks are set from 20 to 40 nm. The materials of the shells are set to be dielectric TiO2 and metallic Au, and both of them have Au cores. It is found that Au@Au yolk shells with large cavities or thick shells have better absorption efficiency, but Au @ TiO2 yolk shells are just the opposite. For near-field intensity, Au@Au yolk shells are higher than Au @ TiO2. A yolk-shell structure with larger cavity has smaller full width at half maximum. These results can effectively guide the design of yolk-shell structures for sensing and optoelectronic applications based on LSPR.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.17.016003\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016003","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation of yolk-shell nanostructures optical properties
Abstract. A yolk-shell structure is a double-layer hollow nanostructure, which is composed of a shell, a cavity, and a core. The yolk-shell structures have fascinating properties because of their attractive localized surface plasmon resonance (LSPR) feature, which arouses considerable interest in both optically active nanostructures and practical applications. Compared with the single metal nanostructure, a yolk shell has a more controlled degree of freedom, superior optical properties, and potential applications in photocatalysis and solar cell. However, the preparation of yolk shells often requires multiple steps, making it difficult to control the geometric parameters accurately, which leads to uncontrollability of the experimental results. Therefore, it is necessary to study how the size and composition of a yolk shell affect LSPR properties to further guide and optimize the experimental process. Based on the discrete dipole approximation (DDA) method, the absorption spectra, near-field enhancement, and sensing properties of yolk-shell nanoparticles were analyzed. By adjusting the diameters of cavities, cores, shells, and the materials of the shells, we study the influence of yolk-shell structures on the LSPR properties. In detail, the thicknesses of the shells are set from 5 to 20 nm, the diameters of the cavities being set from 50 to 70 nm and the diameters of the yolks are set from 20 to 40 nm. The materials of the shells are set to be dielectric TiO2 and metallic Au, and both of them have Au cores. It is found that Au@Au yolk shells with large cavities or thick shells have better absorption efficiency, but Au @ TiO2 yolk shells are just the opposite. For near-field intensity, Au@Au yolk shells are higher than Au @ TiO2. A yolk-shell structure with larger cavity has smaller full width at half maximum. These results can effectively guide the design of yolk-shell structures for sensing and optoelectronic applications based on LSPR.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.