双InGaAs/InAs通道对inp基hemt直流和射频性能的影响

IF 1 4区 材料科学 Journal of Ovonic Research Pub Date : 2022-06-01 DOI:10.15251/jor.2022.183.411
H. Hao, M. Su, H. Wu, H. Mei, R. Yao, F. Liu, H. Wen, S. X. Sun
{"title":"双InGaAs/InAs通道对inp基hemt直流和射频性能的影响","authors":"H. Hao, M. Su, H. Wu, H. Mei, R. Yao, F. Liu, H. Wen, S. X. Sun","doi":"10.15251/jor.2022.183.411","DOIUrl":null,"url":null,"abstract":"The double InGaAs/InAs channel structure is designed to improve DC and RF characteristics of InP-based HEMT, which is studied by the numerical simulation. The saturated channel current, transconductance, subthreshold slope, drain induced barrier lowering, and frequency characteristics are analyzed. A comparison is done between the device with the double InGaAs/InAs channel and InGaAs channel. By using double InGaAs/InAs channel, maximum transconductance of 1019.7 mS/mm is achieved, and the lower value of subthreshold slope and drain induced barrier lowering is also obtained. The excellent performance of device with double InGaAs/InAs channel structure is mainly due to the enhanced confinement of the electrons in the channel region. In addition, the maximum oscillation frequency of 758.7 GHz is obtained with the double InGaAs/InAs channel structure.These results indicate that InP-based HEMT with double InGaAs/InAs channel structure is a promising candidate for high frequency application.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of double InGaAs/InAs channel on DC and RF performances of InP-based HEMTs\",\"authors\":\"H. Hao, M. Su, H. Wu, H. Mei, R. Yao, F. Liu, H. Wen, S. X. Sun\",\"doi\":\"10.15251/jor.2022.183.411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The double InGaAs/InAs channel structure is designed to improve DC and RF characteristics of InP-based HEMT, which is studied by the numerical simulation. The saturated channel current, transconductance, subthreshold slope, drain induced barrier lowering, and frequency characteristics are analyzed. A comparison is done between the device with the double InGaAs/InAs channel and InGaAs channel. By using double InGaAs/InAs channel, maximum transconductance of 1019.7 mS/mm is achieved, and the lower value of subthreshold slope and drain induced barrier lowering is also obtained. The excellent performance of device with double InGaAs/InAs channel structure is mainly due to the enhanced confinement of the electrons in the channel region. In addition, the maximum oscillation frequency of 758.7 GHz is obtained with the double InGaAs/InAs channel structure.These results indicate that InP-based HEMT with double InGaAs/InAs channel structure is a promising candidate for high frequency application.\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2022.183.411\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.183.411","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了改善InP基HEMT的直流和射频特性,设计了双InGaAs/InAs沟道结构,并对其进行了数值模拟研究。分析了饱和沟道电流、跨导、亚阈值斜率、漏极诱导势垒降低和频率特性。对具有双InGaAs/InAs沟道和InGaAs沟道的器件进行了比较。通过使用双InGaAs/InAs沟道,获得了1019.7mS/mm的最大跨导,并且还获得了较低的亚阈值斜率值和漏极引起的势垒降低。具有双InGaAs/InAs沟道结构的器件之所以具有优异的性能,主要是由于增强了沟道区电子的限制。此外,在双InGaAs/InAs沟道结构中获得了758.7GHz的最大振荡频率。这些结果表明,具有双InGaAs/InAs沟道结构的InP基HEMT是一种很有前途的高频应用候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of double InGaAs/InAs channel on DC and RF performances of InP-based HEMTs
The double InGaAs/InAs channel structure is designed to improve DC and RF characteristics of InP-based HEMT, which is studied by the numerical simulation. The saturated channel current, transconductance, subthreshold slope, drain induced barrier lowering, and frequency characteristics are analyzed. A comparison is done between the device with the double InGaAs/InAs channel and InGaAs channel. By using double InGaAs/InAs channel, maximum transconductance of 1019.7 mS/mm is achieved, and the lower value of subthreshold slope and drain induced barrier lowering is also obtained. The excellent performance of device with double InGaAs/InAs channel structure is mainly due to the enhanced confinement of the electrons in the channel region. In addition, the maximum oscillation frequency of 758.7 GHz is obtained with the double InGaAs/InAs channel structure.These results indicate that InP-based HEMT with double InGaAs/InAs channel structure is a promising candidate for high frequency application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Modified nonlinear ion drift model for TiO2 memristor: a temperature dependent study Electrochemical performance of rice grains like high Mn-doped anatase TiO2 nanoparticles as lithium-ion batteries electrode material Probing optoelectronic and thermoelectric properties of double perovskite halides Li2CuInY6 (Y = Cl, Br, I) for energy conversion applications Absorber layer improvement and performance analysis of CIGS thin-film solar cell Investigations on synthesis, growth and characterisations of a NLO material: L-Tryptophanium phosphite (LTP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1