用于遥控飞机系统的涡轮配电系统的开发

IF 0.9 Q3 ENGINEERING, AEROSPACE Journal of Aerospace Technology and Management Pub Date : 2021-03-05 DOI:10.1590/JATM.V13.1209
M. Eqbal, N. Fernando, M. Marino, G. Wild
{"title":"用于遥控飞机系统的涡轮配电系统的开发","authors":"M. Eqbal, N. Fernando, M. Marino, G. Wild","doi":"10.1590/JATM.V13.1209","DOIUrl":null,"url":null,"abstract":"Turboelectric distributed propulsion systems are paving the way for more electric aircraft systems (TeDP). This type of system provides a solution for some of the drawbacks of current low-energy-density batteries, which limit the ability of long-endurance electric aircraft. However, turboelectric propulsion requires the use of advanced turboelectric motors, superconductive materials and cryogenic cooling technologies, which are still under development and may be in production in the near future. This paper investigates a turboelectric propulsion system that can be considered an initial step in the production of TeDP in a remotely piloted aircraft system with the use of existing technology. This is achieved by replacing the gear and the starter motor of a turboprop with a high-speed permanent magnet electric machine to generate electrical power and propelling the aircraft through a distributed electric propulsion system. In this theoretical study, an augmentation to Breguet’s range and endurance equation is developed. This study confirmed that the new system is 31% lighter than the turboprop engine. Then the effect of the weight savings is used in the distributed electric propulsion (DEP) aerodynamic studies and found that there is a drastic increase in the range for a TeDP developed with the high-speed machine.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development of a Turbo Electric Distribution System for Remotely Piloted Aircraft Systems\",\"authors\":\"M. Eqbal, N. Fernando, M. Marino, G. Wild\",\"doi\":\"10.1590/JATM.V13.1209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turboelectric distributed propulsion systems are paving the way for more electric aircraft systems (TeDP). This type of system provides a solution for some of the drawbacks of current low-energy-density batteries, which limit the ability of long-endurance electric aircraft. However, turboelectric propulsion requires the use of advanced turboelectric motors, superconductive materials and cryogenic cooling technologies, which are still under development and may be in production in the near future. This paper investigates a turboelectric propulsion system that can be considered an initial step in the production of TeDP in a remotely piloted aircraft system with the use of existing technology. This is achieved by replacing the gear and the starter motor of a turboprop with a high-speed permanent magnet electric machine to generate electrical power and propelling the aircraft through a distributed electric propulsion system. In this theoretical study, an augmentation to Breguet’s range and endurance equation is developed. This study confirmed that the new system is 31% lighter than the turboprop engine. Then the effect of the weight savings is used in the distributed electric propulsion (DEP) aerodynamic studies and found that there is a drastic increase in the range for a TeDP developed with the high-speed machine.\",\"PeriodicalId\":14872,\"journal\":{\"name\":\"Journal of Aerospace Technology and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Technology and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/JATM.V13.1209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/JATM.V13.1209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 5

摘要

涡轮电动分布式推进系统正在为更多的电动飞机系统(TeDP)铺平道路。这种类型的系统为目前低能量密度电池的一些缺点提供了解决方案,这些缺点限制了长航时电动飞机的能力。然而,涡电推进需要使用先进的涡电发动机、超导材料和低温冷却技术,这些技术仍在开发中,可能在不久的将来投入生产。本文研究了一种涡电推进系统,该系统可以被视为利用现有技术在遥控飞机系统中生产TeDP的初始步骤。这是通过用高速永磁电机取代涡轮螺旋桨发动机的齿轮和启动电机来产生电力并通过分布式电力推进系统推动飞机来实现的。在这项理论研究中,对布雷盖的射程和耐力方程进行了扩充。这项研究证实,新系统比涡轮螺旋桨发动机轻31%。然后将重量节省的效果用于分布式电力推进(DEP)空气动力学研究,发现使用高速机器开发的TeDP的航程急剧增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Turbo Electric Distribution System for Remotely Piloted Aircraft Systems
Turboelectric distributed propulsion systems are paving the way for more electric aircraft systems (TeDP). This type of system provides a solution for some of the drawbacks of current low-energy-density batteries, which limit the ability of long-endurance electric aircraft. However, turboelectric propulsion requires the use of advanced turboelectric motors, superconductive materials and cryogenic cooling technologies, which are still under development and may be in production in the near future. This paper investigates a turboelectric propulsion system that can be considered an initial step in the production of TeDP in a remotely piloted aircraft system with the use of existing technology. This is achieved by replacing the gear and the starter motor of a turboprop with a high-speed permanent magnet electric machine to generate electrical power and propelling the aircraft through a distributed electric propulsion system. In this theoretical study, an augmentation to Breguet’s range and endurance equation is developed. This study confirmed that the new system is 31% lighter than the turboprop engine. Then the effect of the weight savings is used in the distributed electric propulsion (DEP) aerodynamic studies and found that there is a drastic increase in the range for a TeDP developed with the high-speed machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
审稿时长
20 weeks
期刊最新文献
Influence of 2D and 3D Arrangements of Aramid Fibers on the Dart Drop Test of Epoxy Composites Smart Cabin Design Concept for Regional Aircraft: Challenges, Future Aspects & Requirements Smart Cabin Design Concept for Regional Aircraft: Technologies, Applications & Architecture Formation of a Regionally Oriented Structure and Number of the Airline’s Helicopter Fleet Based on Consumer Preferences of Customers Indirect Connection Analysis Based on Wave-system Structures of Airlines Architecture in Hub Airport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1