Khairul Mohd Arshad, Muhamad Mat Noor, A. A. Manaf, Kawarada H., F. S., Syamsul M.
{"title":"1mm2大功率VCSEL的封装设计和热分析","authors":"Khairul Mohd Arshad, Muhamad Mat Noor, A. A. Manaf, Kawarada H., F. S., Syamsul M.","doi":"10.1108/mi-03-2022-0048","DOIUrl":null,"url":null,"abstract":"\nPurpose\nVertical-cavity surface-emitting laser (VCSEL) is a high-performance semiconductor device made of unique epitaxial layers grown on n-type GaAs or InP substrates. The VCSEL’s thermal resistance, Rth, is an essential metric that reflects its thermal properties and dependability. The purpose of this paper is to develop packaging for 1 mm2 VCSEL chips made of a variety of materials, such as ceramic, lead frame and printed circuit board (PCB)-based packaging, as well as provide an idea or design that can withstand and perform well in terms of Rth and heat dissipation during operation. SolidWorks 2017 and AutoCAD Mechanical 2017 software were used to publish all thoughts and ideas, including the size dimensions (x, y and z) and material choices for each package.\n\n\nDesign/methodology/approach\nFollowing the modelling and material selection, the next step is to use the Ansys Mechanical Structural FEA Analysis software to simulate all packaging for Rth and determine which packaging produced the best result, therefore, determining the heat dissipation for each packing. All parameters were used based on the standard cleanroom requirement for the industrial manufacturing backend process, where the cleanroom classification is 10,000 particles (ISO 7). The results demonstrated that the ceramic and lead frame provided good Rth values of 7.3 and 7.0 K/W, respectively, when compared to the PCB, which provided more than 80 K/W; thus, the heat dissipation for PCB packaging also increased.\n\n\nFindings\nAs a result of the research, it was determined that ceramic and lead frame packaging are appropriate and capable of delivering good Rth and heat dissipation values when compared to PCB. In comparison to PCB, which requires numerous modifications, such as adding via holes and a thermal bar in an attempt to lower the Rth value, neither packaging requires improvement. Ceramic was chosen for development based on Rth's highest performance, with the actual device consisting of a lead frame and PCB. The Zth measurement test was carried out on a ceramic package, and the Rth result was comparable to the simulation result of 7.6 K/W, indicating that simulation was already proved for research and development.\n\n\nOriginality/value\nThe purpose of this study is to determine which proposed packaging design would give the highest Rth performance of a 1 mm2 chip as well as the best heat dissipation. In comparison to other studies, VCSEL packaging used the header and window cap as package components with a wavelength of 850 nm, and other VCSEL packaging developments used the sub mount on ceramic package with an output power ranging from 500 mW to 2 W, whereas this study used a huge wavelength and an output power of 4 W.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packaging design and thermal analysis for 1 mm2 high power VCSEL\",\"authors\":\"Khairul Mohd Arshad, Muhamad Mat Noor, A. A. Manaf, Kawarada H., F. S., Syamsul M.\",\"doi\":\"10.1108/mi-03-2022-0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nVertical-cavity surface-emitting laser (VCSEL) is a high-performance semiconductor device made of unique epitaxial layers grown on n-type GaAs or InP substrates. The VCSEL’s thermal resistance, Rth, is an essential metric that reflects its thermal properties and dependability. The purpose of this paper is to develop packaging for 1 mm2 VCSEL chips made of a variety of materials, such as ceramic, lead frame and printed circuit board (PCB)-based packaging, as well as provide an idea or design that can withstand and perform well in terms of Rth and heat dissipation during operation. SolidWorks 2017 and AutoCAD Mechanical 2017 software were used to publish all thoughts and ideas, including the size dimensions (x, y and z) and material choices for each package.\\n\\n\\nDesign/methodology/approach\\nFollowing the modelling and material selection, the next step is to use the Ansys Mechanical Structural FEA Analysis software to simulate all packaging for Rth and determine which packaging produced the best result, therefore, determining the heat dissipation for each packing. All parameters were used based on the standard cleanroom requirement for the industrial manufacturing backend process, where the cleanroom classification is 10,000 particles (ISO 7). The results demonstrated that the ceramic and lead frame provided good Rth values of 7.3 and 7.0 K/W, respectively, when compared to the PCB, which provided more than 80 K/W; thus, the heat dissipation for PCB packaging also increased.\\n\\n\\nFindings\\nAs a result of the research, it was determined that ceramic and lead frame packaging are appropriate and capable of delivering good Rth and heat dissipation values when compared to PCB. In comparison to PCB, which requires numerous modifications, such as adding via holes and a thermal bar in an attempt to lower the Rth value, neither packaging requires improvement. Ceramic was chosen for development based on Rth's highest performance, with the actual device consisting of a lead frame and PCB. The Zth measurement test was carried out on a ceramic package, and the Rth result was comparable to the simulation result of 7.6 K/W, indicating that simulation was already proved for research and development.\\n\\n\\nOriginality/value\\nThe purpose of this study is to determine which proposed packaging design would give the highest Rth performance of a 1 mm2 chip as well as the best heat dissipation. In comparison to other studies, VCSEL packaging used the header and window cap as package components with a wavelength of 850 nm, and other VCSEL packaging developments used the sub mount on ceramic package with an output power ranging from 500 mW to 2 W, whereas this study used a huge wavelength and an output power of 4 W.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-03-2022-0048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-03-2022-0048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Packaging design and thermal analysis for 1 mm2 high power VCSEL
Purpose
Vertical-cavity surface-emitting laser (VCSEL) is a high-performance semiconductor device made of unique epitaxial layers grown on n-type GaAs or InP substrates. The VCSEL’s thermal resistance, Rth, is an essential metric that reflects its thermal properties and dependability. The purpose of this paper is to develop packaging for 1 mm2 VCSEL chips made of a variety of materials, such as ceramic, lead frame and printed circuit board (PCB)-based packaging, as well as provide an idea or design that can withstand and perform well in terms of Rth and heat dissipation during operation. SolidWorks 2017 and AutoCAD Mechanical 2017 software were used to publish all thoughts and ideas, including the size dimensions (x, y and z) and material choices for each package.
Design/methodology/approach
Following the modelling and material selection, the next step is to use the Ansys Mechanical Structural FEA Analysis software to simulate all packaging for Rth and determine which packaging produced the best result, therefore, determining the heat dissipation for each packing. All parameters were used based on the standard cleanroom requirement for the industrial manufacturing backend process, where the cleanroom classification is 10,000 particles (ISO 7). The results demonstrated that the ceramic and lead frame provided good Rth values of 7.3 and 7.0 K/W, respectively, when compared to the PCB, which provided more than 80 K/W; thus, the heat dissipation for PCB packaging also increased.
Findings
As a result of the research, it was determined that ceramic and lead frame packaging are appropriate and capable of delivering good Rth and heat dissipation values when compared to PCB. In comparison to PCB, which requires numerous modifications, such as adding via holes and a thermal bar in an attempt to lower the Rth value, neither packaging requires improvement. Ceramic was chosen for development based on Rth's highest performance, with the actual device consisting of a lead frame and PCB. The Zth measurement test was carried out on a ceramic package, and the Rth result was comparable to the simulation result of 7.6 K/W, indicating that simulation was already proved for research and development.
Originality/value
The purpose of this study is to determine which proposed packaging design would give the highest Rth performance of a 1 mm2 chip as well as the best heat dissipation. In comparison to other studies, VCSEL packaging used the header and window cap as package components with a wavelength of 850 nm, and other VCSEL packaging developments used the sub mount on ceramic package with an output power ranging from 500 mW to 2 W, whereas this study used a huge wavelength and an output power of 4 W.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.