{"title":"基于毫米波Rotman透镜的大型天线子系统阵列波束形成网络的设计与性能分析","authors":"A. Rahimian, Y. Alfadhl, A. Alomainy","doi":"10.2528/PIERC17071703","DOIUrl":null,"url":null,"abstract":"This paper presents the comprehensive analytical design and numerical performance evaluation of novel millimetre-wave (mm-wave) switched-beam networks, based on the Rotman lens (RL) array feeding concept. These passive array devices have been designed for operation in the 28GHz frequency band, covering the whole 18–38 GHz frequency range. The primary objective of the work is to conduct a thorough feasibility study of designing wideband mm-wave beamformers based on liquid-crystal polymer (LCP) substrates, to be potentially employed as low-cost and high-performance subsystems for the advanced transceiver units and large-scale antennas. The presented RLs exhibit significant output behaviours for electronic beam steering, in terms of the scattering (S) parameters, phase characteristics, and surface current distributions, as the feeding systems’ primary functionality indicators.","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":"78 1","pages":"159-171"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERC17071703","citationCount":"6","resultStr":"{\"title\":\"Design and Performance Analysis of Millimetre-Wave Rotman Lens-Based Array Beamforming Networks for Large-Scale Antenna Subsystems\",\"authors\":\"A. Rahimian, Y. Alfadhl, A. Alomainy\",\"doi\":\"10.2528/PIERC17071703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the comprehensive analytical design and numerical performance evaluation of novel millimetre-wave (mm-wave) switched-beam networks, based on the Rotman lens (RL) array feeding concept. These passive array devices have been designed for operation in the 28GHz frequency band, covering the whole 18–38 GHz frequency range. The primary objective of the work is to conduct a thorough feasibility study of designing wideband mm-wave beamformers based on liquid-crystal polymer (LCP) substrates, to be potentially employed as low-cost and high-performance subsystems for the advanced transceiver units and large-scale antennas. The presented RLs exhibit significant output behaviours for electronic beam steering, in terms of the scattering (S) parameters, phase characteristics, and surface current distributions, as the feeding systems’ primary functionality indicators.\",\"PeriodicalId\":20699,\"journal\":{\"name\":\"Progress in Electromagnetics Research C\",\"volume\":\"78 1\",\"pages\":\"159-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2528/PIERC17071703\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/PIERC17071703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/PIERC17071703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Design and Performance Analysis of Millimetre-Wave Rotman Lens-Based Array Beamforming Networks for Large-Scale Antenna Subsystems
This paper presents the comprehensive analytical design and numerical performance evaluation of novel millimetre-wave (mm-wave) switched-beam networks, based on the Rotman lens (RL) array feeding concept. These passive array devices have been designed for operation in the 28GHz frequency band, covering the whole 18–38 GHz frequency range. The primary objective of the work is to conduct a thorough feasibility study of designing wideband mm-wave beamformers based on liquid-crystal polymer (LCP) substrates, to be potentially employed as low-cost and high-performance subsystems for the advanced transceiver units and large-scale antennas. The presented RLs exhibit significant output behaviours for electronic beam steering, in terms of the scattering (S) parameters, phase characteristics, and surface current distributions, as the feeding systems’ primary functionality indicators.