资源受限的人启发机器人视觉的空间变型和主动视觉机制综述

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2023-06-09 DOI:10.1007/s10514-023-10107-7
Rui Pimentel de Figueiredo, Alexandre Bernardino
{"title":"资源受限的人启发机器人视觉的空间变型和主动视觉机制综述","authors":"Rui Pimentel de Figueiredo,&nbsp;Alexandre Bernardino","doi":"10.1007/s10514-023-10107-7","DOIUrl":null,"url":null,"abstract":"<div><p>In order to explore and understand the surrounding environment in an efficient manner, humans have developed a set of space-variant vision mechanisms that allow them to actively attend different locations in the surrounding environment and compensate for memory, neuronal transmission bandwidth and computational limitations in the brain. Similarly, humanoid robots deployed in everyday environments have limited on-board resources, and are faced with increasingly complex tasks that require interaction with objects arranged in many possible spatial configurations. The main goal of this work is to describe and overview biologically inspired, space-variant human visual mechanism benefits, when combined with state-of-the-art algorithms for different visual tasks (e.g. object detection), ranging from low-level hardwired attention vision (i.e. foveal vision) to high-level visual attention mechanisms. We overview the state-of-the-art in biologically plausible space-variant resource-constrained vision architectures, namely for active recognition and localization tasks.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10107-7.pdf","citationCount":"0","resultStr":"{\"title\":\"An overview of space-variant and active vision mechanisms for resource-constrained human inspired robotic vision\",\"authors\":\"Rui Pimentel de Figueiredo,&nbsp;Alexandre Bernardino\",\"doi\":\"10.1007/s10514-023-10107-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to explore and understand the surrounding environment in an efficient manner, humans have developed a set of space-variant vision mechanisms that allow them to actively attend different locations in the surrounding environment and compensate for memory, neuronal transmission bandwidth and computational limitations in the brain. Similarly, humanoid robots deployed in everyday environments have limited on-board resources, and are faced with increasingly complex tasks that require interaction with objects arranged in many possible spatial configurations. The main goal of this work is to describe and overview biologically inspired, space-variant human visual mechanism benefits, when combined with state-of-the-art algorithms for different visual tasks (e.g. object detection), ranging from low-level hardwired attention vision (i.e. foveal vision) to high-level visual attention mechanisms. We overview the state-of-the-art in biologically plausible space-variant resource-constrained vision architectures, namely for active recognition and localization tasks.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-023-10107-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10107-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10107-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地探索和理解周围环境,人类发展了一套空间变视觉机制,使他们能够主动参加周围环境中的不同位置,并补偿大脑中的记忆,神经元传输带宽和计算限制。同样,在日常环境中部署的人形机器人的机载资源有限,并且面临着越来越复杂的任务,这些任务需要与许多可能的空间配置中的物体进行交互。这项工作的主要目标是描述和概述生物启发的、空间变化的人类视觉机制的好处,当结合最先进的算法用于不同的视觉任务(如物体检测)时,从低级的硬连接注意力视觉(即中央凹视觉)到高级的视觉注意机制。我们概述了生物上合理的空间变量资源约束视觉架构的最新技术,即主动识别和定位任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An overview of space-variant and active vision mechanisms for resource-constrained human inspired robotic vision

In order to explore and understand the surrounding environment in an efficient manner, humans have developed a set of space-variant vision mechanisms that allow them to actively attend different locations in the surrounding environment and compensate for memory, neuronal transmission bandwidth and computational limitations in the brain. Similarly, humanoid robots deployed in everyday environments have limited on-board resources, and are faced with increasingly complex tasks that require interaction with objects arranged in many possible spatial configurations. The main goal of this work is to describe and overview biologically inspired, space-variant human visual mechanism benefits, when combined with state-of-the-art algorithms for different visual tasks (e.g. object detection), ranging from low-level hardwired attention vision (i.e. foveal vision) to high-level visual attention mechanisms. We overview the state-of-the-art in biologically plausible space-variant resource-constrained vision architectures, namely for active recognition and localization tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
Optimal policies for autonomous navigation in strong currents using fast marching trees A concurrent learning approach to monocular vision range regulation of leader/follower systems Correction: Planning under uncertainty for safe robot exploration using gaussian process prediction Dynamic event-triggered integrated task and motion planning for process-aware source seeking Continuous planning for inertial-aided systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1