Sinéad Mitchell, Juliana Steinbach, Tomás Flanagan, Pouyan Ghabezi, Noel Harrison, Simon O’Reilly, Stephen Killian, William Finnegan
{"title":"评估轻型无人机交付的可持续性:寻找合适的评估方法","authors":"Sinéad Mitchell, Juliana Steinbach, Tomás Flanagan, Pouyan Ghabezi, Noel Harrison, Simon O’Reilly, Stephen Killian, William Finnegan","doi":"10.1186/s42252-023-00040-4","DOIUrl":null,"url":null,"abstract":"<div><p>Drone technology is widely available and is rapidly becoming a crucial instrument in the functions of businesses and government agencies worldwide. The demand for delivery services is accelerating particularly since the Covid-19 pandemic. Both companies and customers want these services to be efficient, timely, safe, and sustainable, but these are major challenges. Last-mile delivery by lightweight short-range drones has the potential to address these challenges. However, there is a lack of consistency and transparency in assessing and reporting the sustainability of last-mile delivery services and drones. This paper critically reviews published papers on Life Cycle Assessments of drones to date. The study reveals a lack of comprehensive studies, and a need to examine composite and battery manufacturing developments and provides key considerations for future study development.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00040-4","citationCount":"3","resultStr":"{\"title\":\"Evaluating the sustainability of lightweight drones for delivery: towards a suitable methodology for assessment\",\"authors\":\"Sinéad Mitchell, Juliana Steinbach, Tomás Flanagan, Pouyan Ghabezi, Noel Harrison, Simon O’Reilly, Stephen Killian, William Finnegan\",\"doi\":\"10.1186/s42252-023-00040-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drone technology is widely available and is rapidly becoming a crucial instrument in the functions of businesses and government agencies worldwide. The demand for delivery services is accelerating particularly since the Covid-19 pandemic. Both companies and customers want these services to be efficient, timely, safe, and sustainable, but these are major challenges. Last-mile delivery by lightweight short-range drones has the potential to address these challenges. However, there is a lack of consistency and transparency in assessing and reporting the sustainability of last-mile delivery services and drones. This paper critically reviews published papers on Life Cycle Assessments of drones to date. The study reveals a lack of comprehensive studies, and a need to examine composite and battery manufacturing developments and provides key considerations for future study development.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":576,\"journal\":{\"name\":\"Functional Composite Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00040-4\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composite Materials\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42252-023-00040-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composite Materials","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s42252-023-00040-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the sustainability of lightweight drones for delivery: towards a suitable methodology for assessment
Drone technology is widely available and is rapidly becoming a crucial instrument in the functions of businesses and government agencies worldwide. The demand for delivery services is accelerating particularly since the Covid-19 pandemic. Both companies and customers want these services to be efficient, timely, safe, and sustainable, but these are major challenges. Last-mile delivery by lightweight short-range drones has the potential to address these challenges. However, there is a lack of consistency and transparency in assessing and reporting the sustainability of last-mile delivery services and drones. This paper critically reviews published papers on Life Cycle Assessments of drones to date. The study reveals a lack of comprehensive studies, and a need to examine composite and battery manufacturing developments and provides key considerations for future study development.