F. Bergmann, Norbert Halmen, C. Scalfi-happ, Dominik Reitzle, A. Kienle, Linda Mittelberg, B. Baudrit, T. Hochrein, M. Bastian
{"title":"用绝对光谱学和拉曼显微镜研究聚乙烯和热固性材料的交联程度","authors":"F. Bergmann, Norbert Halmen, C. Scalfi-happ, Dominik Reitzle, A. Kienle, Linda Mittelberg, B. Baudrit, T. Hochrein, M. Bastian","doi":"10.5194/jsss-12-175-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In the research work presented here, an integrating sphere demonstrator which is suitable for the non-destructive determination of the degree of cross-linking or curing and has the potential for use as an at-line device for in-process quality assurance was assembled and explored. The measurement system allows the analysis of absorption and scattering coefficients of materials independently by means of absolute optical spectroscopy. The two optical parameters showed a good correlation with the degree of cross-linking of cross-linked polyethylene (PE-X) and the degree of curing of different thermosets and adhesives, each of which was determined using different reference methods (wet chemical analysis, differential scanning calorimetry (DSC), and dielectric analysis (DEA)). The results show that different PE-X materials can be distinguished well by their absorption and scattering in the visual (VIS) and near-infrared (NIR) wavelength range, respectively, and conclusions on their degree of cross-linking are possible. Also, the curing of resins can be monitored based on the absorption. In addition, Raman spectroscopy was used to achieve a better understanding of the material changes during the cross-linking of the materials. It also showed a good suitability for monitoring the curing processes in thermosets. In summary, the new method can be used to determine the crucial parameters of these industrial important material types and fulfils the great demand for fast, non-destructive testing, which can be carried out during the process or on the finished product.\n","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the degree of cross-linking of polyethylene and thermosets using absolute optical spectroscopy and Raman microscopy\",\"authors\":\"F. Bergmann, Norbert Halmen, C. Scalfi-happ, Dominik Reitzle, A. Kienle, Linda Mittelberg, B. Baudrit, T. Hochrein, M. Bastian\",\"doi\":\"10.5194/jsss-12-175-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In the research work presented here, an integrating sphere demonstrator which is suitable for the non-destructive determination of the degree of cross-linking or curing and has the potential for use as an at-line device for in-process quality assurance was assembled and explored. The measurement system allows the analysis of absorption and scattering coefficients of materials independently by means of absolute optical spectroscopy. The two optical parameters showed a good correlation with the degree of cross-linking of cross-linked polyethylene (PE-X) and the degree of curing of different thermosets and adhesives, each of which was determined using different reference methods (wet chemical analysis, differential scanning calorimetry (DSC), and dielectric analysis (DEA)). The results show that different PE-X materials can be distinguished well by their absorption and scattering in the visual (VIS) and near-infrared (NIR) wavelength range, respectively, and conclusions on their degree of cross-linking are possible. Also, the curing of resins can be monitored based on the absorption. In addition, Raman spectroscopy was used to achieve a better understanding of the material changes during the cross-linking of the materials. It also showed a good suitability for monitoring the curing processes in thermosets. In summary, the new method can be used to determine the crucial parameters of these industrial important material types and fulfils the great demand for fast, non-destructive testing, which can be carried out during the process or on the finished product.\\n\",\"PeriodicalId\":17167,\"journal\":{\"name\":\"Journal of Sensors and Sensor Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/jsss-12-175-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/jsss-12-175-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Investigation of the degree of cross-linking of polyethylene and thermosets using absolute optical spectroscopy and Raman microscopy
Abstract. In the research work presented here, an integrating sphere demonstrator which is suitable for the non-destructive determination of the degree of cross-linking or curing and has the potential for use as an at-line device for in-process quality assurance was assembled and explored. The measurement system allows the analysis of absorption and scattering coefficients of materials independently by means of absolute optical spectroscopy. The two optical parameters showed a good correlation with the degree of cross-linking of cross-linked polyethylene (PE-X) and the degree of curing of different thermosets and adhesives, each of which was determined using different reference methods (wet chemical analysis, differential scanning calorimetry (DSC), and dielectric analysis (DEA)). The results show that different PE-X materials can be distinguished well by their absorption and scattering in the visual (VIS) and near-infrared (NIR) wavelength range, respectively, and conclusions on their degree of cross-linking are possible. Also, the curing of resins can be monitored based on the absorption. In addition, Raman spectroscopy was used to achieve a better understanding of the material changes during the cross-linking of the materials. It also showed a good suitability for monitoring the curing processes in thermosets. In summary, the new method can be used to determine the crucial parameters of these industrial important material types and fulfils the great demand for fast, non-destructive testing, which can be carried out during the process or on the finished product.
期刊介绍:
Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.