LTE信号抑制局部放电检测的UHF印刷单极膜

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-03-31 DOI:10.26866/jees.2023.2.r.158
Junmo Choi, SeungYong Park, Jisu Lee, Kyung‐Young Jung
{"title":"LTE信号抑制局部放电检测的UHF印刷单极膜","authors":"Junmo Choi, SeungYong Park, Jisu Lee, Kyung‐Young Jung","doi":"10.26866/jees.2023.2.r.158","DOIUrl":null,"url":null,"abstract":"External partial discharge (PD) sensors for the ultra-high frequency (UHF) method are widely used to detect the PD signals in high-voltage power equipment for ease of installation and maintenance. However, conventional external PD sensors detect not only PD signals but also LTE signals; thus, a microwave filter is usually employed. In this work, a UHF filtering antenna (filtenna) is proposed as the external PD sensor to detect PD signals and simultaneously block LTE-band signals. The proposed UHF filtenna is the printed monopole antenna with a built-in interdigital bandpass geometry, which is selected for its compact size. Measurement results show that the proposed UHF-printed monopole filtenna operates adequately in the frequency range of 1 GHz to 1.6 GHz and simultaneously blocks LTE signals significantly.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UHF-Printed Monopole Filtenna for Partial Discharge Detection with LTE Signal Suppression\",\"authors\":\"Junmo Choi, SeungYong Park, Jisu Lee, Kyung‐Young Jung\",\"doi\":\"10.26866/jees.2023.2.r.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"External partial discharge (PD) sensors for the ultra-high frequency (UHF) method are widely used to detect the PD signals in high-voltage power equipment for ease of installation and maintenance. However, conventional external PD sensors detect not only PD signals but also LTE signals; thus, a microwave filter is usually employed. In this work, a UHF filtering antenna (filtenna) is proposed as the external PD sensor to detect PD signals and simultaneously block LTE-band signals. The proposed UHF filtenna is the printed monopole antenna with a built-in interdigital bandpass geometry, which is selected for its compact size. Measurement results show that the proposed UHF-printed monopole filtenna operates adequately in the frequency range of 1 GHz to 1.6 GHz and simultaneously blocks LTE signals significantly.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.2.r.158\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.2.r.158","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

用于超高频(UHF)方法的外部局部放电(PD)传感器被广泛用于检测高压电力设备中的局部放电信号,以便于安装和维护。然而,传统的外部PD传感器不仅检测PD信号,而且检测LTE信号;因此,通常使用微波滤波器。在这项工作中,提出了一种超高频滤波天线(filtenna)作为外部局部放电传感器,以检测局部放电信号并同时阻断LTE波段的信号。所提出的超高频滤波器是具有内置叉指带通几何结构的印刷单极天线,因其紧凑的尺寸而被选择。测量结果表明,所提出的UHF印刷单极子滤波器在1GHz至1.6GHz的频率范围内充分工作,同时显著阻断LTE信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UHF-Printed Monopole Filtenna for Partial Discharge Detection with LTE Signal Suppression
External partial discharge (PD) sensors for the ultra-high frequency (UHF) method are widely used to detect the PD signals in high-voltage power equipment for ease of installation and maintenance. However, conventional external PD sensors detect not only PD signals but also LTE signals; thus, a microwave filter is usually employed. In this work, a UHF filtering antenna (filtenna) is proposed as the external PD sensor to detect PD signals and simultaneously block LTE-band signals. The proposed UHF filtenna is the printed monopole antenna with a built-in interdigital bandpass geometry, which is selected for its compact size. Measurement results show that the proposed UHF-printed monopole filtenna operates adequately in the frequency range of 1 GHz to 1.6 GHz and simultaneously blocks LTE signals significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
FMCW Interference Waveform Estimation Based on Intentional Local Interference for Automotive Radars Four-Element Biodegradable Substrate-Integrated MIMO DRA with Radiation Diversity Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1