钠纳米流体用于稠油和油砂储层的高效采油

Soft science Pub Date : 2021-09-08 DOI:10.20517/ss.2021.08
D. Zareei, D. Luo, K. Kostarelos, Z. Ren
{"title":"钠纳米流体用于稠油和油砂储层的高效采油","authors":"D. Zareei, D. Luo, K. Kostarelos, Z. Ren","doi":"10.20517/ss.2021.08","DOIUrl":null,"url":null,"abstract":"Nanomaterials exhibit unique chemical and physical properties in comparison with their bulk-phase counterparts, attracting significant attention from the oil and gas industry in the hope of solving challenging issues. Current heavy oil extraction methods are costly and have unsatisfactory efficiency, and facing environmental restrictions increasingly. Our recent introduction of sodium (Na) nanofluid provides a promising method for heavy oil extraction since it shows improved oil recovery without burning carbon-containing fuels. Here, we conducted core-flooding tests to further evaluate the effect of this Na nanofluid on recovering oil from different formations, which had not been previously demonstrated, as well as to deepen our understanding of the underlying mechanisms. The Na nanofluid exhibited excellent oil-extraction efficiency for both types of heavy oil tested. The recovery mechanisms were found to be complicated. We also found that post-injection soaking and using the proper solvent to disperse the sodium nanoparticles are important for further boosting oil recovery.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sodium nanofluid for efficient oil recovery in heavy oil and oil sand reservoirs\",\"authors\":\"D. Zareei, D. Luo, K. Kostarelos, Z. Ren\",\"doi\":\"10.20517/ss.2021.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterials exhibit unique chemical and physical properties in comparison with their bulk-phase counterparts, attracting significant attention from the oil and gas industry in the hope of solving challenging issues. Current heavy oil extraction methods are costly and have unsatisfactory efficiency, and facing environmental restrictions increasingly. Our recent introduction of sodium (Na) nanofluid provides a promising method for heavy oil extraction since it shows improved oil recovery without burning carbon-containing fuels. Here, we conducted core-flooding tests to further evaluate the effect of this Na nanofluid on recovering oil from different formations, which had not been previously demonstrated, as well as to deepen our understanding of the underlying mechanisms. The Na nanofluid exhibited excellent oil-extraction efficiency for both types of heavy oil tested. The recovery mechanisms were found to be complicated. We also found that post-injection soaking and using the proper solvent to disperse the sodium nanoparticles are important for further boosting oil recovery.\",\"PeriodicalId\":74837,\"journal\":{\"name\":\"Soft science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/ss.2021.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2021.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与体相材料相比,纳米材料表现出独特的化学和物理性能,吸引了石油和天然气行业的极大关注,希望解决具有挑战性的问题。目前的稠油开采方法成本高昂,效率不令人满意,并且越来越面临环境限制。我们最近引入的钠(Na)纳米流体为稠油开采提供了一种很有前途的方法,因为它在不燃烧含碳燃料的情况下提高了石油采收率。在这里,我们进行了岩心驱油测试,以进一步评估这种Na纳米流体对从不同地层中回收石油的影响,这是以前没有证明的,并加深我们对潜在机制的理解。Na纳米流体对测试的两种类型的重油都表现出优异的采油效率。恢复机制被发现是复杂的。我们还发现,注射后浸泡和使用合适的溶剂分散纳米钠对进一步提高采收率很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sodium nanofluid for efficient oil recovery in heavy oil and oil sand reservoirs
Nanomaterials exhibit unique chemical and physical properties in comparison with their bulk-phase counterparts, attracting significant attention from the oil and gas industry in the hope of solving challenging issues. Current heavy oil extraction methods are costly and have unsatisfactory efficiency, and facing environmental restrictions increasingly. Our recent introduction of sodium (Na) nanofluid provides a promising method for heavy oil extraction since it shows improved oil recovery without burning carbon-containing fuels. Here, we conducted core-flooding tests to further evaluate the effect of this Na nanofluid on recovering oil from different formations, which had not been previously demonstrated, as well as to deepen our understanding of the underlying mechanisms. The Na nanofluid exhibited excellent oil-extraction efficiency for both types of heavy oil tested. The recovery mechanisms were found to be complicated. We also found that post-injection soaking and using the proper solvent to disperse the sodium nanoparticles are important for further boosting oil recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Unity quantum yield of InP/ZnSe/ZnS quantum dots enabled by Zn halide-derived hybrid shelling approach Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications Liquid metal neuro-electrical interface 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1